Effect of lactase, transglutaminase and temperature on ice cream crystal by a response surface methodology approach
DOI:
https://doi.org/10.33448/rsd-v9i11.10138Keywords:
Central composite rotatable design; Crystal size; Enzymes; Microscopy; Strawberry ice cream.Abstract
This study aimed to evaluate the ice cream crystal content considering the addition of enzymes lactase (0.3% to 0.9%) and transglutaminase (0.6% to 7.4%), employing different incubation temperatures (13 to 47 °C) through a 23 central composite rotatable design (DCCR). The crystals content was estimated by ice cream scattering in blades and the crystals images were obtained with a bright field optical microscope for counting and determining the crystals size using Image J software. All ice cream treatments prepared at 40 oC (T2, T6, and T8) and TA2 treatment (T2 treatment similar formulation) showed small content of crystals if compared with the temperatures of 20 and 30 ºC; it was probably associated with a large presence of air bubbles, fat globules and probably some casein micelles, making them ideal for small crystals agglomeration that form a firmer, smooth and cohesive texture. Moreover, the combined use of lactase and transglutaminase enzymes in the ice cream is viable, efficient and an easy technology for ice cream production. Furthermore, the use of response surface methodology was effective in selecting the best formulation in relation to desirability features ensuring its use in the ice cream development.
References
Adhikari, B. M., Truong, T., Prakash, S., Bansal, N., & Bhandari, B. (2020). Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. International Dairy Journal, 104789. https://doi.org/10.1016/j.idairyj.2020.104789
Al, M., Ersoz, F., Ozaktas, T., Turkanoglu-Ozçelik, A., & Kuçukçetin, A. (2020). Comparison of the effects of adding microbial transglutaminase to milk and ice cream mixture on the properties of ice cream. International Journal of Dairy Technology, 0, 1–7. https://doi.org/10.1111/1471-0307.12707
Aloglu, H. S., Ozcan, Y., Karasu, S., Cetin, B., & Sagdic, O. (2018). Influence of transglutaminase treatment on the physicochemical , rheological , and melting properties of ice cream prepared from goat milk. Mljekarstvo, 68(2), 126–138. https://doi.org/10.15567/mljekarstvo.2018.0206
Cavender, G. A., & Kerr, W. L. (2020). Microfluidization of full-fat ice cream mixes : Effects on rheology and microstructure. Journal of Food Process Engineering, 43(e13350), 1–12. https://doi.org/10.1111/jfpe.13350
Chang, Y., & Hartel, R. W. (2002). Development of air cells in a batch ice cream freezer. Journal of Food Engineering, 55, 71–78.
Costa, F F, Resende, J. V, Abreu, L. R., & Goff, H. D. (2008). Effect of Calcium Chloride Addition on Ice Cream Structure and Quality. Journal of Dairy Science, 91(6), 2165–2174. https://doi.org/10.3168/jds.2007-0932
Costa, Fabiano Freire, Resende, J. V., & Abreu, L. R. (2012). Estabilidade da gordura em sorvetes. Boletin Do CEPPA, 30(1), 27–34.
Cruz, A. G., Antunes, A. E. C., Spuza, A. L. O. P., Faria, J. A. F., & Saad, S. M. I. (2009). Ice-cream as a probiotic food carrier. Food Research International, 42(9), 1233–1239. https://doi.org/10.1016/j.foodres.2009.03.020
Dekker, P. J. T., Koenders, D., & Bruins, M. J. (2019). Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients, 11(551), 1–14. https://doi.org/10.3390/nu11030551
Flores, A. A., & Goff, H. D. (1999). Ice Crystal Size Distributions in Dynamically Frozen Model Solutions and Ice Cream as Affected by Stabilizers. Journal of Dairy Science, 82(7), 1399–1407. https://doi.org/10.3168/jds.S0022-0302(99)75366-X
Francisquini, A., Rocha, J., Martins, E., Stephani, R., Henrique, P., Toledo, I. R., Perrone, Í. T., & Carvalho, A. F. De. (2020). 5-Hydroxymethylfurfural formation and color change in lactose-hydrolyzed Dulce de leche. Journal of Dairy Research, 86(477–482). https://doi.org/doi.org/10.1017/S0022029919000815
Goff, H. D. (2002). Formation and stabilisation of structure in ice-cream and related products. Current Opinion in Colloid and Interface Science, 7, 432–437.
Goff, H. D. (2008). 65 Years of ice cream science. International Dairy Journal, 18, 754–758. https://doi.org/10.1016/j.idairyj.2008.03.006
Hartel, R. W. (1996). Ice crystallization during the manufacture of ice cream. Trends in Food Science & Technology, 71(7), 315–321.
Homayouni, A., Javadi, M., Ansari, F., Pourjafar, H., Jafarzadeh, M., & Barzegar, A. (2018). Advanced Methods in Ice Cream Analysis : a Review. Food Analytical Methods, 11, 3224–3234.
Horner, T. W., Dunn, M. L., Eggett, D. L., & Ogden, L. V. (2011). β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. Journal of Dairy Science, 94(7), 3242–3249. https://doi.org/10.3168/jds.2010-3742
Kaleda, A., Tsanev, R., Klesment, T., Vilu, R., & Laos, K. (2018). Ice cream structure modi fi cation by ice-binding proteins. Food Chemistry, 246, 164–171. https://doi.org/10.1016/j.foodchem.2017.10.152
Kruif, C. G., Tuinier, R., Holt, C., Timmins, P. A., & Rollema, H. S. (2002). Physicochemical Study of K- and ?-Casein Dispersions and the Effect of Cross-Linking by Transglutaminase. Langmuir, 18(12), 4885–4891.
Kuraishi, C., Yamazaki, K., & Susa, Y. (2001). Transglutaminase: Its utilization in the food industry. Food Reviews International, 17(2), 221–246.
Matsumura, Y., Lee, D., & Mori, T. (2000). Molecular weight distributions of a -lactalbumin polymers formed by mammalian and microbial transglutaminases. Food Hydr, 14, 49–59.
Medeiros, A. C., Filho, E. R. T., & Bolini, H. M. A. (2019). Impact of Natural and Artificial Sweeteners Compounds in the Sensory Profile and Preference Drivers Applied to Traditional, Lactose-Free, and Vegan Frozen Desserts of Chocolate Flavor. Journal of Food Science, 102(9), 7838–7839.
Metwally, A. M. M. E. (2007). Effect of enzymatic cross-linking of milk proteins on properties of ice cream with different composition. International Journal of Food Science and Technology, 42, 939–947. https://doi.org/10.1111/j.1365-2621.2006.01314.x
Muse, M. R., & Hartel, R. W. (2004). Ice Cream Structural Elements that Affect Melting Rate and Hardness. Journal of Dairy Science, 87(1), 1–10. https://doi.org/10.3168/jds.S0022-0302(04)73135-5
Ndoye, F. T., & Alvarez, G. (2014). Characterization of ice recrystallization in ice cream during storage using the focused beam reflectance measurement. Journal of Food Engineering, 1–11. https://doi.org/10.1016/j.jfoodeng.2014.09.014
Pandalaneni, K., & Amamcharla, J. K. (2016). Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process. Journal of Dairy Science, 99(7), 5244–5253. https://doi.org/10.3168/jds.2015-10643
Patel, M. R., Baer, R. J., & Acharya, M. R. (2006). Increasing the Protein Content of Ice Cream. Journal of Dairy Science, 89, 1400–1406. https://doi.org/10.3168/jds.S0022-0302(06)72208-1
Regand, A., & Goff, H. D. (2003). Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloids, 17, 95–102.
Rodrigues-Nogales, J. M. (2006). Enhancement of transglutaminase-induced protein cross-linking by preheat treatment of cows ’ milk : A statistical approach. International Dairy Journal, 16, 26–32. https://doi.org/10.1016/j.idairyj.2005.01.003
Rodrigues, M. I., & Iemma, A. F. (2014). Experimental design and process optimization. CRC Press.
Schorsch, C., Carrie, H., & Norton, I. T. (2000). Cross-linking casein micelles by a microbial transglutaminase : infuence of cross-links in acid-induced gelation. International Dairy Journ, 10, 529–539.
Sharma, R., Chr, P., & Qvist, K. B. (2001). Influence of transglutaminase treatment of skim milk on the formation of e - ( g -glutamyl ) lysine and the susceptibility of individual proteins towards crosslinking. International Dairy Journal, 11, 785–793.
Skryplonek, K., Henriques, M., Gomes, D., Viegas, J., Fonseca, C., Pereira, C., Dmytrów, I., & Mituniewicz-małek, A. (2019). Characteristics of lactose-free frozen yogurt with κ-carrageenan and corn starch as stabilizers. Journal of Dairy Science, 102(9), 7838–7848. https://doi.org/10.3168/jds.2019-16556
Tsuchiya, A.C., Da Silva, A. D. G. M., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Translation and Interpreting, 38(2). https://doi.org/10.5433/1679-0359.2017v38n2p749
Tsuchiya, Ana Claudia, Monteiro, A. G., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Semina: Ciências Agrárias, 38(2), 749–758. https://doi.org/10.5433/1679-0359.2017v38n2p749
Wang, J., Zhao, M., Yang, X., Jiang, Y., & Chun, C. (2007). Gelation behavior of wheat gluten by heat treatment followed by transglutaminase cross-linking reaction. Food Hydrocolloids, 21, 174–179. https://doi.org/10.1016/j.foodhyd.2006.03.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Celeide Pereira; Carla Adriana Pizarro Schmidt; Daneysa Lahis Kalschne; Solange Teresinha Carpes; Fabiana Ourique; Chirle Ferreira; Valdelucia Maria Alves de Souza Grinevicius; André Wüst Zibetti; Pedro Luiz Manique Barreto; Rozangela Curi Pedrosa; Ernani Sebastião Sant’Anna
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.