Effect of pre-harvest calcium silicate on post-harvest quality of tomatoes

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10148

Keywords:

Hybrids; Post-harvest conservation; Respiration; Solanum lycopersicum L.

Abstract

The present work evaluated the influence of calcium silicate on the polygalacturonase enzyme activity, respiration, ethylene, and the physicochemical characteristics on the post-harvest quality of two tomato hybrids. The experimental design was of randomized blocks, with four repetitions in protected cultivation environment. The treatments were distributed in a 2 x 5 factorial scheme, corresponding to the hybrids (Ivety and Natalia) and five doses of calcium silicate (0, 150, 300, 450 and 600 kg ha-1), which were applied on the same day as the pots were filled. Evaluations were carried out on the fruits, namely: ethylene production, fruit respiration, firmness, number of loculus, polygalacturonase activity, total carotenoids, lycopene, phenolic compounds, soluble solids content, pH, titratable acidity and ascorbic acid content.  The application of calcium silicate provided the reduction of ethylene production and fruit respiration. Natalia hybrid showed low polygalacturonase activity, this difference being due to genetic variabilityThe increase of calcium silicate doses provided the reduction of polygalacturonase enzyme concentration due to its constitution in the cell wall. The concentrations of lycopene, phenolic compounds, soluble solids, pH, titratable acidity and ascorbic acid in the fruits increased in response to the increasing doses of calcium silicate for 'Ivety'. Hybrids present distinct behaviors on the influence of the fertilization of tomatoes with calcium silicate, which can increase the post-harvest conservation and improve the physical-chemical characteristics of tomato fruits.

References

Alexander, L., Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany, 53 (377), 2039-2055. https://doi.org/10.1093/jxb/erf072.

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves L. M., Sparovek, G. (2013). Koppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22 (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.

Bassan, M. M., Mourão Filho, F. A. A., Caron, V. C., Couto, H. T. Z., Jacomino, A. P. (2013). The harvesting system affects the quality and conservation of the “Tahiti” acid lime. Scientia Horticulturae, 155, 72-77. https://doi.org/10.1016/j.scienta.2013.03.008.

Beckmann, M. Z., Duarte, G. R. B., Paula, V. A. D., Mendez, M. E. G., Peil, R. M. N. (2006). Radiação solar em ambiente protegido cultivado com tomateiro nas estações verão-outono do Rio Grande do Sul. Ciência Rural, 36(1), 86-92. Retrieved from https://www.scielo.br/pdf/cr/v36n1/a13v36n1.

Benassi, M. T., Antunes, A. J. (1988). A comparison of metaphosphoric and oxalic acids as extractant solutions for the determination of vitamin C in selected vegetables. Brazilian Archives of Biology and Technology, 31 (4), 507-513.

Benites, F. R. G., Maluf, W. R., Paiva, L. V., Faria, M. V., Andrade Junior, V. C., Gonçalves, L. D. (2010). Teste de alelismo entre os mutantes de amadurecimento alcobaça e non-ripening em tomateiro. Ciência agrotecnologia, 34, 1669-1673. https://doi.org/10.1590/S1413-70542010000700014.

Bertin, N., Génard, M. (2018). Tomato quality as influenced by preharvest factors. Scientia Horticulturae, 233, 264-276. https://doi.org/10.1016/j.scienta.2018.01.056.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Camargo Filho, W. P., Camargo, F. P. (2017). Evolução das cadeias produtivas de tomate industrial e para mesa no Brasil, 1990-2016. Informações Econômicas. 47: 50-59.

Dalastra, G. M., Echer, M. M., Coutinho, P. W. R., Klosowski, E. S. (2018). Características produtivas de cultivares de tomateiro italiano em função de tipos de poda. Scientia Agraria Paranaensis, 17 (4), 398-404. Retrieved from http://saber.unioeste.br/inde x.php/scientiaagraria/article/view/19947.

Dalastra, G. M. (2017). Características agronômicas e índices de trocas gasosas de cultivares de tomateiro com diferentes números de hastes por planta. 2017. (Doctoral dissertation), Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon.

Del Giudice, R., Raiola, A., Tenore, G. C., Frusciante, L., Barone, A., Monti, D. M., Rigano, M. M. (2015). Antioxidant bioactive compounds in tomato fruits at different ripening stages and their effects on normal and cancer cells. Journal of Functional Foods, 18, 83-94. https://doi.org/10.1016/j.jff.2015.06.060.

Della Vecchia, P. T., Koch, P. S. (2000). Tomates longa vida: O que são, como foram desenvolvidos? Horticultura Brasileira, 18 (1), 3-4. https://doi.org/10.1590/S0102-05362000000100001.

Ferreira, D. F. (2014). Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38 (2), 109-112. https://doi.org/10.1590/S1413-70542014000200001.

Figueiredo, F. C., Botrel, P. P., Teixera, C. P., Petrazzini, L. L., Locarno, M., Carvalho, J. G. (2010) Pulverização foliar e fertirrigação com silício nos atributos físico-químicos de qualidade e índices de coloração do morango. Ciência e Agrotecnologia, 34 (5), 1306-1311. https://doi.org/10.1590/S1413-70542010000500032.

Gazolla-Neto, A., Aumonde, T. Z., Pedó, T., Olsen, D., Villela, F. A. (2013). Ação de níveis de luminosidade sobre o crescimento de plantas de maria-pretinha (Solanum americanum Mill.). Revista Brasileira de Biociências, 11 (1), 88-92. Retrieved from http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/2403/1175.

Georgé, S., Brat, P., Alter, P., Amiot, M. J. (2005). Rapid determination of polyphenols and vitamin C in plant derived products. Journal of Agricultural and Food Chemistry, 53 (5), 1370-1373. https://doi.org/10.1021/jf048396b.

IAL Instituto Adolfo Lutz. 2008. Normas analíticas do Instituto Adolfo Lutz: métodos físico-químicos para análises de alimentos. In: O. Zenebon, N. S. Pascuet and P. Tiglea (coord.). 4. ed. São Paulo: IAL.

Islam, M. Z., Mele, M. A., Kang, H. (2018). Gaseous, Physicochemical and Microbial Performances of Silicon Foliar Spraying Techniques on Cherry Tomatoes. AGRIVITA Journal of Agricultural Science, 40 (2), 185-192. http://doi.org/10.17503/agrivita.v40i2.1792.

Kulcheski, F. R., Côrrea, R., Gomes, I. A., Lima, J. C., Margis, R. (2015). NPK macronutrientes and microRNA homeostasis. Frontiers in Plant Science, 6, 1-19. https://doi.org/10.3389/fpls.2015.00451.

Lemos Neto, H. S., Guimarães, M. A., Mesquita, R. O., Sampaio, I. M. G., Hendges, A. R. A. A., Oliveira, A. B. (2018). Silicon Potential as Attenuator of Salinity Effects on Growth and Post-harvest Quality of Lettuce. Journal of Agricultural Science, 10, 455-463. https://doi.org/10.5539/jas.v10n7p455.

Lever, M. (1972). A new reaction for colorimetric determination of carbohydrates. Analytical Biochemistry, 47 (1), 273-279. https://doi.org/10.1016/0003-2697(72)90301-6.

Marodin, J. C., Resende, J. T. V., Morales, R. G. F., Faria, M. V., Trevisam, A. R., Figueiredo, A. S. T., Dias, D. M. (2016). Tomato post-harvest durability and physicochemical quality depending on silicon sources and doses. Horticultura Brasileira, 34 (3), 361-366. https://doi.org/10.1590/S0102-05362016003009.

Menegale, M. D. C., Castro, G. S. A., Mancuso, M. A. C. (2015). Silício: interação com o sistema solo-planta. Embrapa Amapá-Artigo em periódico indexado (ALICE). https://ainfo.cnptia.embrapa.br/digital/bitstream/item/130412/1/CPAF-AP-2015-Silicio-interacao-com-o-sistema-solo-planta.pdf.

Modolon, T. A., Boff, P., Rosa, J. M., Sousa, P. M. R., Miquelluti, D. J. (2012). Qualidade pós-colheita de frutos de tomateiro submetidos a preparados em altas diluições. Horticultura Brasileira, 30 (1), 58-63. https://doi.org/10.1590/S0102-05362012000100010.

Murillo-Amador, B., Yamada, S., Yamaguchi, T., Rueda-Puente, E., Ávila-Serrano, N., García-Hernández, J. L., López-Aguilar, R., Troyo-Diéguez, E., Nieto-Garibay, A. (2007). Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal of Agronomy and Crop Science, 193 (6), 413-421. https://doi.org/10.1111/j.1439-037X.2007.00273.x.

Oliveira, M. N. S., Gusmão, E., Lopes, P. S. N., Simões, M. O. M., Ribeiro, L. M., Dias, B. A. S. (2006). Estádio de maturação dos frutos e fatores relacionados aos aspectos nutritivos e de textura da polpa de pequi (Caryocar brasiliense Camb). Revista Brasileira de Fruticultura, 28 (3), 380-386. https://doi.org/10.1590/S0100-29452006000300010.

Pressey, R., Avants, J. K. (1973). Separation and characterization of endopolygalactorunase and exopolygalactorunase from peaches. Plant Physiology, 52 (3), 252-256. https://doi.org/10.1104/pp.52.3.252.

Resende, J. M., Chitarra, M. I. F., Maluf, W. R., Chitarra, A. B., Saggin Júnior, O. J. (2004). Atividade de enzimas pectinametilesterase e poligalacturonase durante o amadurecimento de tomates do grupo multilocular. Horticultura Brasileira, 22 (2), 206-212. https://doi.org/10.1590/S0102-05362004000200009.

Rodrigues, G. B., Marim, B. G., Silva, D. J. H., Mattedi, A. P., Almeida, V. S. (2010). Análise de trilha de componentes de produção primários e secundários em tomateiro do grupo Salada. Pesquisa Agropecuária Brasileira, 45 (2), 155-162. https://doi.org/10.1590/S0100-204X2010000200006.

Rodriguez-Amaya, D. A. 2001. Guide to carotenoids analysis in food. Washington: International Life Sciences Institute Press.

Serrano, M., Amorós, A., Pretel, M. T., Martínez-Madrid, M. C., Madrid, R., Romojaro, F. (2002). Effect of calcium deficiency on melon (Cucumis melo L.) texture and glassiness incidence during ripening. Food Science and Technology International, 8 (3), 147-154. https://doi.org/10.1106/108201302026117.

Sims, D. A., Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81 (2-3), 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X.

Su, L., Diretto, G., Purgatto, E., Danoun, S., Zouine, M., Li, Z., Chervin, C. (2015). Carotenoid accumulation during tomato fruit ripening is modulated by the auxinethylene balance. BMC Plant Biology, 15 (1), 1-12. https://doi.org/10.1186/s12870-015-0495-4.

Downloads

Published

02/12/2020

How to Cite

COUTINHO, P. W. R.; ECHER, M. de M.; BRAGA, G. C.; GUIMARÃES, . V. F. .; LANA, M. do C. .; ALVES, T. N. .; BRITO, T. S. . Effect of pre-harvest calcium silicate on post-harvest quality of tomatoes. Research, Society and Development, [S. l.], v. 9, n. 11, p. e74791110148, 2020. DOI: 10.33448/rsd-v9i11.10148. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10148. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences