Effects of extracts of two Ulva spp. seaweeds on tomato germination and seedling growth

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10174

Keywords:

Biostimulant; Eco-friendly agriculture; Seed invigoration; Seedling vigor.

Abstract

Brown seaweed extracts are commercially used as agricultural biostimulants, and the green macroalgae Ulva spp. has shown promise for that purpose. We evaluated the ideal dosage of U. lactuca ulvan and flour on seed germination invigoration and the effects of U. flexuosa and U. lactuca extracts on tomato seedling growth (Solanun lycopersicum). The germination recovery of aged seeds after the application of U. lactuca was evaluated by seed germination rates and seedling emergence. Greenhouse cultivated seedlings were irrigated with 0.2 and 0.4 g×L-1 of the flour, or an ulvan solution of Ulva spp. Seedling growth parameters (height, stem diameter, height/stem diameter ratio, biomass, and number of leaves) were compared with the control (seedlings irrigated with distilled water). All dosages of U. lactuca ulvan and flour were found to increase the germination rates of aged seeds as compared to controls. No significant difference in seedling emergence rates were seen. After treatment with Ulva spp. extracts no significant differences in seedling growth were detected. We concluded that low doses of the U. lactuca extract will increase the germination rates of S. lycopersicum seeds and, while different dosages of the extracts of two Ulva’s species did not stimulate tomato seedling growth, they were also not lethal.

References

Alaswad, A., Dassisti, M., Prescott, T., & Olabi, A. G. (2015). Technologies and developments of third generation biofuel production. Renewable and Sustainable Energy Reviews, 51, 1446–1460. https://doi.org/10.1016/j.rser.2015.07.058

Argerich, C., Bradford, K., & Tarquis, A. (1989). The effects of priming and ageing on resistance to deterioration of tomato seeds. Journal of Experimental Botany, 40(5), 593–598. https://doi.org/10.1093/jxb/40.5.593

Arioli, T., Mattner, S. W., & Winberg, P. C. (2015). Applications of seaweed extracts in Australian agriculture: past, present and future. Journal of Applied Phycology, 27(5), 2007–2015. https://doi.org/10.1007/s10811-015-0574-9

Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012

Benech-Arnold, R., Sanchez, R. (2004). Handbook of Seed Physiology (CRC Press (ed.)).

Brasil. (2009). Regras para análise de sementes. In Brasília: Mapa/AC. https://doi.org/978-85-99851-70-8

Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2), 3–41. https://doi.org/10.1007/s11104-014-2131-8

Castelar, B., Reis, R. P., & dos Santos Calheiros, A. C. (2014). Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: Recruitment, growth, and ulvan yield. Journal of Applied Phycology, 26(5), 1989–1999. https://doi.org/10.1007/s10811-014-0329-z

Castellanos-Barriga, L. G., Santacruz-Ruvalcaba, F., Hernández-Carmona, G., Ramírez-Briones, E., & Hernández-Herrera, R. M. (2017). Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology, 29(5), 2479–2488. https://doi.org/10.1007/s10811-017-1082-x

Chanthini, K. M.-P., Stanley-Raja, V., Thanigaivel, A., Karthi, S., Palanikani, R., Sundar, N. S., Sivanesh, H., Soranam, R., & Senthil-Nathan, S. (2019). Sustainable Agronomic Strategies for Enhancing the Yield and Nutritional Quality of Wild Tomato, Solanum Lycopersicum (l) Var Cerasiforme Mill. Agronomy, 9(6), 311. https://doi.org/10.3390/agronomy9060311

Cole, A. J., Roberts, D. A., Garside, A. L., de Nys, R., & Paul, N. A. (2016). Seaweed compost for agricultural crop production. Journal of Applied Phycology, 28(1), 629–642. https://doi.org/10.1007/s10811-015-0544-2

Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371–393. https://doi.org/10.1007/s10811-010-9560-4

Cuartero, J., Bolarín, M., Asíns, M., & Moreno, V. (2006). Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57(5), 1045–1058. https://doi.org/10.1093/jxb/erj102

Czabator, F. J. (1962). Germination value: an index combining speed and completeness of pine seed germination. Forest Science, 8(4), 386–396. https://doi.org/10.1093/forestscience/8.4.386

du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021

El Boukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants, 9(3). https://doi.org/10.3390/plants9030359

faostat. (n.d.). Food and Agriculture Organization of the United Nations Available. 2019. Retrieved December 30, 2019, from http://fao.org/faostat/em

Finch-Savage, W., & Bassel, G. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567–591. https://doi.org/doi:10.1093/jxb/erv490

Guiry, M., & Guiry, G. (2020). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org

Gupta, V., Kumar, M., Brahmbhatt, H., Reddy, C. R. K., Seth, A., & Jha, B. (2011). Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method. Plant Physiology and Biochemistry, 49(11), 1259–1263. https://doi.org/10.1016/j.plaphy.2011.08.004

Hassan, S. M., & Ghareib, H. R. (2009). Bioactivity of Ulva lactuca L. acetone extract on germination and growth of lettuce and tomato plants. African Journal of Biotechnology, 8(16), 3832–3838. https://doi.org/10.4314/ajb.v8i16.62068

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26(1), 619–628. https://doi.org/10.1007/s10811-013-0078-4

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Zañudo-Hernández, J., & Hernández-Carmona, G. (2016). Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology, 28(4), 2549–2560. https://doi.org/10.1007/s10811-015-0781-4

Hughey, J. R., Maggs, C. A., Mineur, F., Jarvis, C., Miller, K. A., Shabaka, S. H., & Gabrielson, P. W. (2019). Genetic analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) holotype and related type specimens reveals name misapplications, unexpected origins, and new synonymies. Journal of Phycology, 55(3), 503–508. https://doi.org/10.1111/jpy.12860

IndexBox. (n.d.). Organic Tomato Market, Analysis and Forecast to 2025. 2017. Retrieved from https://pt.slideshare.net/IndexBox_Marketing/us-organic-tomato-market-analysis-and-forecast-to-2025

Kalaivanan, C., Chandrasekaran, M., & Venkatesalu, V. (2012). Effect of seaweed liquid extract of Caulerpa scalpelliformis on growth and biochemical constituents of black gram Vigna mungo (L.) Hepper). Phykos, 42(2), 46–53.

Khan, W., Rayirath, P. Usha Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., Prithiviraj, B., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386–399. https://doi.org/10.1007/s00344-009-9103-x

Lehahn, Y., Ingle, K. N., & Golberg, A. (2016). Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: Feasibility and sustainability. Algal Research, 17, 150–160. https://doi.org/10.1016/j.algal.2016.03.031

Matthews, S., Noli, E., Demir, I., Khajeh-Hosseini, M., & Wagner, M. H. (2012). Evaluation of seed quality: From physiology to international standardization. Seed Science Research, 22(SUPPL. 1) S69-S73. https://doi.org/10.1017/S0960258511000365

Mzibra, A., Aasfar, A., El Arroussi, H., Khouloud, M., Dhiba, D., Kadmiri, I. M., & Bamouh, A. (2018). Polysaccharides extracted from Moroccan seaweed: a promising source of tomato plant growth promoters. Journal of Applied Phycology, 30(5), 2953–2962. https://doi.org/10.1007/s10811-018-1421-6

Nigam, M., Mishra, A., Salehi, Kumar, M., Sharifi-Rad, M., Coviello, E., Iriti, M., & Sharifi-Rad, J. (2019). Accelerated ageing induces physiological and biochemical changes in tomato seeds involving MAPK pathways. Scientia Horticulturae, 248, 20–28. https://doi.org/10.1016/j.scienta.2018.12.056

Panobianco, M., & Marcos Filho, J. (2001). Envelhecimento acelerado e deterioração controlada em sementes de tomate. Scientia Agricola, 58(3), 525–531. https://doi.org/10.1590/S0103-90162001000300014

Paulert, R., Talamini, V., Cassolato, J. E. F., Duarte, M. E. R., Noseda, M. D., Smania Jr, a., & Stadnik, M. J. (2009). Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). Journal of Plant Diseases and Protection, 116(6), 263–270. https://doi.org/10.1007/BF03356321

Reis, R. P., Carvalho Junior, A. A., Facchinei, A. P., Calheiros, A. C. S., & Castelar, B. (2018). Direct effects of ulvan and a flour produced from the green alga Ulva fasciata Delile on the fungus Stemphylium solani Weber. Algal Research, 30, 23–27. https://doi.org/10.1016/j.algal.2017.12.007

Ricci, M., Tilbury, L., Daridon, B., & Sukalac, K. (2019). General principles to justify plant biostimulant claims. Frontiers in Plant Science, 10(April), 1–8. https://doi.org/10.3389/fpls.2019.00494

Senthilkumar, R., Vijayaraghavan, K., Thilakavathi, M., Iyer, P. V. R., & Velan, M. (2006). Seaweeds for the remediation of wastewaters contaminated with zinc (II) ions. Journal of Hazardous Materials, 136(3), 791–799. https://doi.org/10.1016/j.jhazmat.2006.01.014

Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 1–18. https://doi.org/10.1007/s13205-018-1237-8

Singh, J., Sastry, E., & Singh, V. (2012). Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiology Molecular Biology Plants, 18, 45-50. https://doi.org/10.1007/s12298-011-0097-z

Van Oosten, M. J., Olimpia, P., De Pascale, S., Silletti, S., Maggio, A., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 1–12. https://doi.org/10.1186/s40538-017-0089-5

Wade, R., Augyte, S., Harden, M., Nuzhdin, S., Yarish, C., & Alberto, F. (2020). Macroalgal germplasm banking for conservation, food security, and industry. PLoS Biology, 18(2), 1–10. https://doi.org/10.1371/journal.pbio.3000641

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.02049

Zoran, I. S., Kapoulas, N., Šunić, L., (2014). Tomato fruit quality from organic and conventional production. In Vytautas Pilipavicius (Ed.), Organic Agriculture Towards Sustainability agronomic: Vol. i (Issue May, pp. 147–169). https://doi.org/10.1016/j.colsurfa.2011.12.014

Downloads

Published

28/11/2020

How to Cite

REIS, R. P. .; ANDRADE, A. C. S. de .; CALHEIROS, A. C.; OLIVEIRA, J. C. .; CASTELAR, B. Effects of extracts of two Ulva spp. seaweeds on tomato germination and seedling growth. Research, Society and Development, [S. l.], v. 9, n. 11, p. e61691110174, 2020. DOI: 10.33448/rsd-v9i11.10174. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10174. Acesso em: 12 nov. 2024.

Issue

Section

Agrarian and Biological Sciences