Efectos de extractos de dos macroalgas marinas de Ulva spp. na germinación y no crecimiento de plántulas de tomate

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.10174

Palabras clave:

Bioestimulante; Agricultura ecológica; Vigorización de semillas; Vigor de plántulas.

Resumen

Los extractos de algas pardas se utilizan comercialmente como bioestimulantes agrícolas, y las especies de macroalgas verdes Ulva se han mostrado prometedoras para este propósito. Evaluamos la dosis ideal de harina de ulvana y U. lactuca en el fortalecimiento de semillas de tomate Solanun lycopersicum y los efectos de los extractos de U. flexuosa y U. lactuca sobre el crecimiento de las plántulas. La recuperación de la germinación de semillas envejecidas después de la aplicación de U. lactuca se evaluó mediante las tasas de germinación y emergencia de plántulas. Las plántulas cultivadas en invernadero se irrigaron con 0,2 y 0,4 g.L-1 de la solución de harina o ulvana de Ulva spp. Los parámetros de crecimiento de las plántulas (altura, diámetro del tallo, relación altura/diámetro del tallo, biomasa y número de hojas) se compararon con el control (plántulas regadas con agua destilada). Todas las dosis de harina de ulvana y U. lactuca aumentaron las tasas de germinación de las semillas envejecidas en comparación con los controles. No se observaron diferencias significativas en las tasas de emergencia de las plántulas. Después de tratamientos con extractos de Ulva spp. no se detectaron diferencias significativas en el crecimiento de las plántulas. Concluimos que dosis bajas de extracto de U. lactuca aumentan las tasas de germinación de semillas de S. lycopersicum y, aunque diferentes dosis de extractos de las dos especies de Ulva no estimulan el crecimiento de plántulas de tomate, tampoco son letales.

Citas

Alaswad, A., Dassisti, M., Prescott, T., & Olabi, A. G. (2015). Technologies and developments of third generation biofuel production. Renewable and Sustainable Energy Reviews, 51, 1446–1460. https://doi.org/10.1016/j.rser.2015.07.058

Argerich, C., Bradford, K., & Tarquis, A. (1989). The effects of priming and ageing on resistance to deterioration of tomato seeds. Journal of Experimental Botany, 40(5), 593–598. https://doi.org/10.1093/jxb/40.5.593

Arioli, T., Mattner, S. W., & Winberg, P. C. (2015). Applications of seaweed extracts in Australian agriculture: past, present and future. Journal of Applied Phycology, 27(5), 2007–2015. https://doi.org/10.1007/s10811-015-0574-9

Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012

Benech-Arnold, R., Sanchez, R. (2004). Handbook of Seed Physiology (CRC Press (ed.)).

Brasil. (2009). Regras para análise de sementes. In Brasília: Mapa/AC. https://doi.org/978-85-99851-70-8

Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2), 3–41. https://doi.org/10.1007/s11104-014-2131-8

Castelar, B., Reis, R. P., & dos Santos Calheiros, A. C. (2014). Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: Recruitment, growth, and ulvan yield. Journal of Applied Phycology, 26(5), 1989–1999. https://doi.org/10.1007/s10811-014-0329-z

Castellanos-Barriga, L. G., Santacruz-Ruvalcaba, F., Hernández-Carmona, G., Ramírez-Briones, E., & Hernández-Herrera, R. M. (2017). Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology, 29(5), 2479–2488. https://doi.org/10.1007/s10811-017-1082-x

Chanthini, K. M.-P., Stanley-Raja, V., Thanigaivel, A., Karthi, S., Palanikani, R., Sundar, N. S., Sivanesh, H., Soranam, R., & Senthil-Nathan, S. (2019). Sustainable Agronomic Strategies for Enhancing the Yield and Nutritional Quality of Wild Tomato, Solanum Lycopersicum (l) Var Cerasiforme Mill. Agronomy, 9(6), 311. https://doi.org/10.3390/agronomy9060311

Cole, A. J., Roberts, D. A., Garside, A. L., de Nys, R., & Paul, N. A. (2016). Seaweed compost for agricultural crop production. Journal of Applied Phycology, 28(1), 629–642. https://doi.org/10.1007/s10811-015-0544-2

Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371–393. https://doi.org/10.1007/s10811-010-9560-4

Cuartero, J., Bolarín, M., Asíns, M., & Moreno, V. (2006). Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57(5), 1045–1058. https://doi.org/10.1093/jxb/erj102

Czabator, F. J. (1962). Germination value: an index combining speed and completeness of pine seed germination. Forest Science, 8(4), 386–396. https://doi.org/10.1093/forestscience/8.4.386

du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021

El Boukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants, 9(3). https://doi.org/10.3390/plants9030359

faostat. (n.d.). Food and Agriculture Organization of the United Nations Available. 2019. Retrieved December 30, 2019, from http://fao.org/faostat/em

Finch-Savage, W., & Bassel, G. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567–591. https://doi.org/doi:10.1093/jxb/erv490

Guiry, M., & Guiry, G. (2020). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org

Gupta, V., Kumar, M., Brahmbhatt, H., Reddy, C. R. K., Seth, A., & Jha, B. (2011). Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method. Plant Physiology and Biochemistry, 49(11), 1259–1263. https://doi.org/10.1016/j.plaphy.2011.08.004

Hassan, S. M., & Ghareib, H. R. (2009). Bioactivity of Ulva lactuca L. acetone extract on germination and growth of lettuce and tomato plants. African Journal of Biotechnology, 8(16), 3832–3838. https://doi.org/10.4314/ajb.v8i16.62068

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26(1), 619–628. https://doi.org/10.1007/s10811-013-0078-4

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Zañudo-Hernández, J., & Hernández-Carmona, G. (2016). Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology, 28(4), 2549–2560. https://doi.org/10.1007/s10811-015-0781-4

Hughey, J. R., Maggs, C. A., Mineur, F., Jarvis, C., Miller, K. A., Shabaka, S. H., & Gabrielson, P. W. (2019). Genetic analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) holotype and related type specimens reveals name misapplications, unexpected origins, and new synonymies. Journal of Phycology, 55(3), 503–508. https://doi.org/10.1111/jpy.12860

IndexBox. (n.d.). Organic Tomato Market, Analysis and Forecast to 2025. 2017. Retrieved from https://pt.slideshare.net/IndexBox_Marketing/us-organic-tomato-market-analysis-and-forecast-to-2025

Kalaivanan, C., Chandrasekaran, M., & Venkatesalu, V. (2012). Effect of seaweed liquid extract of Caulerpa scalpelliformis on growth and biochemical constituents of black gram Vigna mungo (L.) Hepper). Phykos, 42(2), 46–53.

Khan, W., Rayirath, P. Usha Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., Prithiviraj, B., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386–399. https://doi.org/10.1007/s00344-009-9103-x

Lehahn, Y., Ingle, K. N., & Golberg, A. (2016). Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: Feasibility and sustainability. Algal Research, 17, 150–160. https://doi.org/10.1016/j.algal.2016.03.031

Matthews, S., Noli, E., Demir, I., Khajeh-Hosseini, M., & Wagner, M. H. (2012). Evaluation of seed quality: From physiology to international standardization. Seed Science Research, 22(SUPPL. 1) S69-S73. https://doi.org/10.1017/S0960258511000365

Mzibra, A., Aasfar, A., El Arroussi, H., Khouloud, M., Dhiba, D., Kadmiri, I. M., & Bamouh, A. (2018). Polysaccharides extracted from Moroccan seaweed: a promising source of tomato plant growth promoters. Journal of Applied Phycology, 30(5), 2953–2962. https://doi.org/10.1007/s10811-018-1421-6

Nigam, M., Mishra, A., Salehi, Kumar, M., Sharifi-Rad, M., Coviello, E., Iriti, M., & Sharifi-Rad, J. (2019). Accelerated ageing induces physiological and biochemical changes in tomato seeds involving MAPK pathways. Scientia Horticulturae, 248, 20–28. https://doi.org/10.1016/j.scienta.2018.12.056

Panobianco, M., & Marcos Filho, J. (2001). Envelhecimento acelerado e deterioração controlada em sementes de tomate. Scientia Agricola, 58(3), 525–531. https://doi.org/10.1590/S0103-90162001000300014

Paulert, R., Talamini, V., Cassolato, J. E. F., Duarte, M. E. R., Noseda, M. D., Smania Jr, a., & Stadnik, M. J. (2009). Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). Journal of Plant Diseases and Protection, 116(6), 263–270. https://doi.org/10.1007/BF03356321

Reis, R. P., Carvalho Junior, A. A., Facchinei, A. P., Calheiros, A. C. S., & Castelar, B. (2018). Direct effects of ulvan and a flour produced from the green alga Ulva fasciata Delile on the fungus Stemphylium solani Weber. Algal Research, 30, 23–27. https://doi.org/10.1016/j.algal.2017.12.007

Ricci, M., Tilbury, L., Daridon, B., & Sukalac, K. (2019). General principles to justify plant biostimulant claims. Frontiers in Plant Science, 10(April), 1–8. https://doi.org/10.3389/fpls.2019.00494

Senthilkumar, R., Vijayaraghavan, K., Thilakavathi, M., Iyer, P. V. R., & Velan, M. (2006). Seaweeds for the remediation of wastewaters contaminated with zinc (II) ions. Journal of Hazardous Materials, 136(3), 791–799. https://doi.org/10.1016/j.jhazmat.2006.01.014

Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 1–18. https://doi.org/10.1007/s13205-018-1237-8

Singh, J., Sastry, E., & Singh, V. (2012). Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiology Molecular Biology Plants, 18, 45-50. https://doi.org/10.1007/s12298-011-0097-z

Van Oosten, M. J., Olimpia, P., De Pascale, S., Silletti, S., Maggio, A., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 1–12. https://doi.org/10.1186/s40538-017-0089-5

Wade, R., Augyte, S., Harden, M., Nuzhdin, S., Yarish, C., & Alberto, F. (2020). Macroalgal germplasm banking for conservation, food security, and industry. PLoS Biology, 18(2), 1–10. https://doi.org/10.1371/journal.pbio.3000641

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.02049

Zoran, I. S., Kapoulas, N., Šunić, L., (2014). Tomato fruit quality from organic and conventional production. In Vytautas Pilipavicius (Ed.), Organic Agriculture Towards Sustainability agronomic: Vol. i (Issue May, pp. 147–169). https://doi.org/10.1016/j.colsurfa.2011.12.014

Descargas

Publicado

28/11/2020

Cómo citar

REIS, R. P. .; ANDRADE, A. C. S. de .; CALHEIROS, A. C.; OLIVEIRA, J. C. .; CASTELAR, B. Efectos de extractos de dos macroalgas marinas de Ulva spp. na germinación y no crecimiento de plántulas de tomate. Research, Society and Development, [S. l.], v. 9, n. 11, p. e61691110174, 2020. DOI: 10.33448/rsd-v9i11.10174. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10174. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas