Characterization and biological activities of polysaccharides extracted from the filamentous fungal cell wall: an updated literature review
DOI:
https://doi.org/10.33448/rsd-v9i11.10217Keywords:
Polysaccharides; Filamentous fungi; Catacterization methods.Abstract
Filamentous fungi are eukaryotic organisms with several industrial and pharmaceutical applications. Polysaccharides are the principal components of cell walls from Fungi and other organisms like diatoms, and have been reported in the industrial and medical fields as products with a huge number of different biological activities and applications. The objectives of this narrative review were to assess the characterization methods and and biological activities of polysaccharides extracted from the filamentous fungal cell wall. Glucans, chitin and galactomannans are the most common polysaccharide often found in the cell walls of fungi. These polysaccharides can contain different glycosidic linkage either an α or β-configuration and at various positions, such as (1-3,1-4, 1-6), as well as several molecular sizes. This leads to an almost limitless diversity in their structure and biological activity. There are many methods for polysaccharides characterization, among them; the methods commonly used involve Infrared Spectrometry (FT-IR), Nuclear Magnetic Resonance Spectroscopy (MRS), and gas chromatography-mass spectrometry (CG-MS). Typically, cell wall polysaccharides from filamentous fungi have been shown to possess complex, important and multifaceted biological activities including mainly antioxidant, anti-inflammatory, immunomodulatory, antinociceptive, antitumor and hypoglycemic activities. Due to the large number of filamentous fungi genus and species capable of producing useful polysaccharides, perform scientific researches, and produce novel scientific knowledge and information are particularly interesting in order to identify polysaccharides with potential biological activity and that can be used for medicinal purposes.
References
Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Ahmed, Z. (2010). Extraction and characterization of beta-D-glucan from oat for industrial utilization. International journal of biological macromolecules, 46(3), 304–309.
doi: 10.1016/j.ijbiomac.2010.01.002
Bordenave, N., Janaswamy, S., & Yao., Y. (2014). Influence of glucan structure on the swelling and leaching properties of starch microparticles. Carbohydrate polymers, 103, 234-243.
doi: 10.1016/j.carbpol.2013.11.031
Bowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays 28(8), 799-808.
doi: 10.1002/bies.20441
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248–254.
doi: 10.1006/abio.1976.9999
Brandl, J., & Andersen, M. R. (2017). Aspergilli: Models for Systems Biology in Filamentous Fungi. Current Opinion in Systems Biology, 6, 67-73.
doi: 10.1016/j.coisb.2017.09.005
Bruice, P. Y. (2004). Química Orgânica, São Paulo: Ed. Prendice Hall.
Castrillo M., Luque, E. M., Pardo-Medina., J, et al. (2018). Transcriptional basis of enhanced photoinduction of carotenoid biosynthesis at low temperature in the fungus Neurospora crassa. Research in Microbiology, 169(2):78-89.
doi: 10.1016/j.resmic.2017.11.003
Cerna, M., et al. (2003). Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydrate Polymers, 51(4), 383-389.
doi: 10.1016/S0144-8617(02)00259-X
Chen, Y., Mao, W., Wang, B., Zhou, L., Gu, Q., Chen, Y., Zhao, C., Li, N., Wang, C., Shan, J., Yan, M., & Lin, C. (2013). Preparation and characterization of an extracellular polysaccharide produced by the deep-sea fungus Penicillium griseofulvum. Bioresource technology, 132, 178–181.
doi: 10.1016/j.biortech.2012.12.075
Chen, Y., Yao, F., Ming, K., Wang, D., Hu, Y., & Liu, J. (2016). Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules (Basel, Switzerland), 21(12), 1705.
doi:10.3390/molecules21121705
Cheng., J et al. (2016). Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodiacinnamomea. Food Hydrocolloids, 53, 37-45.
doi: 10.1016/j.foodhyd.2014.09.035
Ciucanu, L., & Kerek, F. (1984). A simple and rapid method for the permethylation of carbohydrates. Carbohydrateresearch, 131(2), 209-217.
doi:10.1016/0008-6215(84)85242-8
Corradi da Silva, M. L. et al. (2005). Purification and structural characterisation of (1 to 3; 1 to 6)-β-D-glucans (botryosphaerans) from Botryosphaeriarhodina grown on sucrose and fructose as carbon sources: a comparative study. Carbohydrate polymers, 61(1):10-17.
doi: 10.1016/j.carbpol.2005.01.002
Costanzo, M., et al. (2016). A global genetic interaction network maps a wiring diagram of cellular function. Science (New York, N.Y.), 353(6306), aaf1420.
doi:10.1126/science.aaf1420
Cui, S. W. (2005). Food carbohydrates: Chemistry, physical properties, and applications. Boca Raton: CRC Press.
De Groot, P. W., Ram, A. F., & Klis, F. M. (2005). Features and functions of covalently linked proteins in fungal cell walls. Fungal genetics and biology: FG & B, 42(8), 657–675.
doi: 10.1016/j.fgb.2005.04.002
Ding, X., Hou, Y. L., & Hou, W. R. (2012). Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Boletus speciosus Forst. International journal of biological macromolecules, 50(3), 613–618.
doi: 10.1016/j.ijbiomac.2012.01.021
Donot, F. et al. (2012). Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2), 951-962.
doi: 10.1016/j.carbpol.2011.08.083
Du, B., Yang, Y., Bian, Z., & Xu, B. (2017). Characterization and Anti-Inflammatory Potential of an Exopolysaccharide from Submerged Mycelial Culture of Schizophyllum commune. Frontiers in pharmacology, 8, 252.
doi: 10.3389/fphar.2017.00252
Du., B et al. (2015). An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science & Technology, 41(1), 49-59.
doi: 10.1016/j.tifs.2014.09.002
Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168(4265), 167.
doi: 10.1038/168167a0
Fan, L., Li, J., Deng, K., & Ai, L. (2012). Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydrate polymers, 87, 1849-1854.
doi: 10.1016/j.carbpol.2011.10.018
Feofilova, E.P. (2010). The fungal cell wall: Modern concepts of its composition and biological function. Microbiology 79, 711–720.
doi: 10.1134/S0026261710060019
Fesel, P. H., & Zuccaro, A. (2016). β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal genetics and biology: FG & B, 90, 53–60. doi:10.1016/j.fgb.2015.12.004
Free S. J. (2013). Fungal cell wall organization and biosynthesis. Advances in genetics, 81, 33–82.
doi:10.1016/B978-0-12-407677-8.00002-6
Gow, N., Latge, J. P., & Munro, C. A. (2017). The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology spectrum, 5(3), 10.1128/microbiolspec.FUNK-0035-2016.
doi:10.1128/microbiolspec.FUNK-0035-2016
Guo, S., et al. (2013). Preparation, structural characterization and antioxidant activity of an extracellular polysaccharide produced by the fungus Oidiodendrontruncatum GW. Process Biochemistry, 48(3), 539-544.
doi: 10.1016/j.procbio.2013.01.014
Jindal, N., Khattar, J. S. (2018). Microbial polysaccharides in foodindustry. Academic Press.
Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in plant science, 20(4), 206–211.
doi: 10.1016/j.tplants.2015.01.004
Kulkarni, S., Nene, S., & Joshi, K. (2017). Production of Hydrophobins from fungi. Process biochemistry, 61, 1-11.
doi: 10.1016/j.procbio.2017.06.012
Latgé, J. P., Beauvais, A., & Chamilos, G. (2017). The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence. Annual review of microbiology, 71, 99–116.
doi: 10.1146/annurev-micro-030117-020406
Li, X., & Wang, L. (2016). Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides. International journal of biological macromolecules, 83, 270–276.
doi:10.1016/j.ijbiomac.2015.11.060
Magnelli, P. E., Cipollo, J. F., & Robbins, P. W. (2005). A glucanase-driven fractionation allows redefinition of Schizosaccharomyces pombe cell wall composition and structure: assignment of diglucan. Analytical biochemistry, 336(2), 202–212.
doi: 10.1016/j.ab.2004.09.022
Mahapatra, S., & Banerjee, D. (2013). Fungal exopolysaccharide: production, composition and applications. Microbiology insights, 6, 1–16.
doi:10.4137/MBI.S10957
Moretti, A., & Sarrocco, S. (2015). Fungi. Encyclopedia of Food and Health, 162-168.
doi: 10.1016/B978-0-12-384947-2.00341-X
Nie, S., et al. (2013). Bioactive polysaccharides from Cordycepssinensis: Isolation, structure features and bioactivities. Bioactive Carbohydrates and Dietary Fibre, 1(1), 38-52.
doi: 10.1016/j.bcdf.2012.12.002
Nuanpeng, Sunan, Thanonkeo, Sudarat, Klanrit, Preekamol, & Thanonkeo, Pornthap. (2018). Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. Brazilian Journal of Microbiology, 49(Suppl. 1), 140-150.
doi:10.1016/j.bjm.2017.12.011
Orlandelli, R. C., et al. (2016). Screening of endophytic sources of exopolysaccharides: preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time. Biochimie Open, 2, 33-40.
doi: 10.1016/j.biopen.2016.02.003
Pardo-Planas, O., Prade, R. A., Müller, M., Atiyeh, H. K., & Wilkins, M. R. (2017). Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory. Bioresource technology, 243, 874–882.
doi: 10.1016/j.biortech.2017.06.183
Paulussen, C., Hallsworth, J. E., Álvarez-Pérez, S., Nierman, W. C., Hamill, P. G., Blain, D., Rediers, H., & Lievens, B. (2017). Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microbial biotechnology, 10(2), 296–322.
doi: 10.1111/1751-7915.12367
Pazur, J. H. (1994). Neutral polysaccharides. Carbohydrate analysis: a practical approach. 2th ed. Oxford, U K: Oxford University Press.
Pereira, A. S. et al. (2018). Metodologia da Pesquisa Científica. Santa Maria: UAB/NTE/UFSM, (1), 100-108.
Retrieved from https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf
Qi, G., et al. (2018). Solvents production from cassava by co-culture of Clostridium acetobutylicum and Saccharomyces cerevisiae. Journal of Environmental Chemical Engineering, 6(1), 128-133.
doi: 10.1016/j.jece.2017.11.067
Raghukumar, S. (2017). Fungi: Characteristics and Classification. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham.
Ruthes, A. C., et al. (2013). Fucomannogalactan and glucan from mushroom Amanitamuscaria: Structure and inflammatory pain inhibition. Carbohydratepolymers, 98(1), 761-769.
doi: 10.1016/j.carbpol.2013.06.061
Sánchez, Ó. J., Montoya, S., & Vargas, L. M. (2014). Polysaccharide production by submerged fermentation. Polysaccharides: Bioactivity and Biotechnology, 1-19.
doi: 10.1007/978-3-319-03751-6_39-1
Sanchez, S., & Demain, A. L. (2002). Metabolic regulation of fermentation processes. Enzymeand Microbial Technology, 31(7), 895-906.
doi: 10.1016/S0141-0229(02)00172-2
Sharma, S., Khanna, P. K., & Kapoor, S. (2016). Optimised isolation of polysaccharides from Lentinula edodes strain NCBI JX915793 using response surface methodology and their antibacterial activities. Natural product research, 30(5), 616–621.
doi: 10.1080/14786419.2015.1030741
Shi L. (2016). Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. International journal of biological macromolecules, 92, 37–48.
doi: 10.1016/j.ijbiomac.2016.06.100
Sokolov, S. S., Kalebina, T. S., Agafonov, M. O., Arbatskii, N. P., & Kulaev, I. S. (2002). Comparative analysis of the structural role of proteins and polysaccharides in cell walls of the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Doklady. Biochemistry and biophysics, 384, 172–175.
doi: 10.1023/a:1016080432606
Sunytsya, A., & Novák, M. (2013). Structural diversity of fungal glucans. Carbohydrate polymers, 92(1), 792-809.
doi: 10.1016/j.carbpol.2012.09.077
Tedersoo, L., et al. (2014). Fungal biogeography. Global diversity and geography of soil fungi. Science (New York, N.Y.), 346(6213), 1256688.
doi: 10.1126/science.1256688
Tian, S., Hao, C., Xu, G., Yang, J., & Sun, R. (2017). Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. Journal of food and drug analysis, 25(4), 766–775.
doi:10.1016/j.jfda.2016.08.012
Valasques Junior, G. L., de Lima, F. O., Boffo, E. F., Santos, J. D., da Silva, B. C., & de Assis, S. A. (2014). Extraction optimization and antinociceptive activity of (1→3)-β-d-glucan from Rhodotorulamucilaginosa. Carbohydrate polymers, 105, 293–299. doi:10.1016/j.carbpol.2014.01.064
Valasques Junior, G. L. et al. (2017). The extraction and characterisation of a polysaccharide from Moniliophthoraperniciosa CCMB 0257. Natural product research, 31(14), 1647-1654.
doi: 10.1080/14786419.2017.1285302
Wang, C., Mao, W., Chen, Z., Zhu, W., Chen, Y., Zhao, C., Li, N., Yan, M., Liu, X., & Guo, T. (2013). Purification, structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochemistry, 48, 1395-1401.
doi:10.1016/J.PROCBIO.2013.06.029
Wang, J., Hu, W., Li, L., Huang, X., Liu, Y., Wang, D., & Teng, L. (2017). Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PloS one, 12(6), e0180476.
doi: 10.1371/journal.pone.0180476
Wang, K., Li, W., Rui, X., Li, T., Chen, X., Jiang, M., & Dong, M. (2014). Chemical modification, characterization and bioactivity of a release dexo polysaccharide (r-EPS1) from Lactobacillus plantarum 70810. Glycoconjugate journal, 32 (1-2), 17-27.
doi: 10.1007/s10719-014-9567-1
Wang, L., Liu, H. M., & Qin, G. Y. (2017). Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food chemistry, 234, 314–322.
doi: 10.1016/j.foodchem.2017.05.002
Wang, Z., et al. (2017). Using evolutionary genomics, transcriptomics, and systems biology to reveal gene networks underlying fungal development. Fungal Biology Reviews, 2018. 50-56.
Retrieved from https://par.nsf.gov/servlets/purl/10160177
Wang, Z., et al. (2017). Review on cell models to evaluate the potential antioxidant activity of polysaccharides. Food & function, 8(3), 915-926.
doi: 10.1039/c6fo01315e
Xu, X., et al. (2015). Purification and characterization of a glucan from Bacillus Calmette Guerin and the antitumor activity of its sulfated derivative. Carbohydrate polymers, 128, 138-146.
doi: 10.1016/j.carbpol.2015.04.025
Xu, Z., Li, X., Feng, S., Liu, J., Zhou, L., Yuan, M., & Ding, C. (2016). Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake. International journal of biological macromolecules, 91, 1025–1032.
doi: 10.1016/j.ijbiomac.2016.06.067
Yan, M., Mao, W., Chen, C., Kong, X., Gu, Q., Li, N., Liu, X., Wang, B., Wang, S., & Xiao, B. (2014). Structural elucidation of the exopolysaccharide produced by the mangrove fungus Penicillium solitum. Carbohydrate polymers, 111, 485–491.
doi: 10.1016/j.carbpol.2014.05.013
Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate polymers, 183, 91–101.
doi:10.1016/j.carbpol.2017.12.009
Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate polymers, 183, 91–101.
doi: 10.1016/j.carbpol.2017.12.009
Zhang, G., et al. (2015). Purification and antioxidant effect of novel fungal polysaccharides from the stroma of Cordycepskyushuensis. Industrial Crops and Products, 69, 485-491.
doi: 10.1016/j.indcrop.2015.03.006
Zhang, Y., Liu, D., Fang, L., Zhao, X., Zhou, A., & Xie, J. (2018). A galactomannoglucan derived from Agaricus brasiliensis: Purification, characterization and macrophage activation via MAPK and IκB/NFκB pathways. Food chemistry, 239, 603–611. doi:10.1016/j.foodchem.2017.06.152
Zhao, Y., Fan, J., Wang, C., Feng, X., & Li, C. (2018). Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae. Bioresource technology, 257, 339–343.
doi:10.1016/j.biortech.2018.02.096.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Gildomar Lima Valasques Junior; Pâmala Évelin Pires Cedro; Tátilla Putumujú Santana Mendes; Alana Caise dos Anjos Miranda; Aldo Barbosa Côrtes Filho; Danyo Maia Lima; Maíra Mercês Barreto; Antônio Anderson Freitas Pinheiro; Lucas Miranda Marques
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.