Caracterização e atividades biológicas de polissacarídeos extraídos da parede celular de fungos filamentosos: uma revisão da literatura atualizada

Autores

DOI:

https://doi.org/10.33448/rsd-v9i11.10217

Palavras-chave:

Polissacarídeos; Fungos filamentosos; Métodos de catacterização.

Resumo

Fungos filamentosos são organismos eucariontes com diversas aplicações industriais e farmacêuticas. Polissacarídeos são componentes da parede celular de fungos, e outros organismos, e têm sido reportados como produtos com inúmeras atividades biológicas e de aplicações na área industrial e médica. Este estudo trata-se de uma revisão narrativa acerca dos métodos de caracterização e atividade biológica de polissacarídeos isolados de da parede celular de fungos filamentosos. Os polissacarídeos mais frequentemente encontrados nas paredes celulares fúngicas são a quitina, glucanas e galactomananas. Esses polissacarídeos podem conter diferentes tipos de ligação (1-3,1-4, 1-6) dos tipos α ou β, como também, diversos tamanhos moleculares, e essas variações podem ser responsáveis pela variedade de atividade biológica que esses polímeros possuem. Os métodos mais comuns aplicados para caracterização dos polissacarídeos, incluem Espectrometria de Infravermelho, Ressonância Magnética Nuclear e Cromatografia Gasosa Acoplada à Espectrometria de Massas. As atividades biológicas mais frequentemente atribuídas à polissacarídeos de fungos filamentosos incluem, antioxidante, anti-inflamatória, imunomoduladora, antinociceptiva, antitumoral e hipoglicemiante. Devido a variedade de gênero e espécies de fungos filamentosos existentes, estudos de caracterização e atividade biológica são necessários, a fim de identificar polissacarídeos com potencial atividade biológica e que possam ser utilizados para fins medicinais.

Referências

Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Ahmed, Z. (2010). Extraction and characterization of beta-D-glucan from oat for industrial utilization. International journal of biological macromolecules, 46(3), 304–309.

doi: 10.1016/j.ijbiomac.2010.01.002

Bordenave, N., Janaswamy, S., & Yao., Y. (2014). Influence of glucan structure on the swelling and leaching properties of starch microparticles. Carbohydrate polymers, 103, 234-243.

doi: 10.1016/j.carbpol.2013.11.031

Bowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays 28(8), 799-808.

doi: 10.1002/bies.20441

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248–254.

doi: 10.1006/abio.1976.9999

Brandl, J., & Andersen, M. R. (2017). Aspergilli: Models for Systems Biology in Filamentous Fungi. Current Opinion in Systems Biology, 6, 67-73.

doi: 10.1016/j.coisb.2017.09.005

Bruice, P. Y. (2004). Química Orgânica, São Paulo: Ed. Prendice Hall.

Castrillo M., Luque, E. M., Pardo-Medina., J, et al. (2018). Transcriptional basis of enhanced photoinduction of carotenoid biosynthesis at low temperature in the fungus Neurospora crassa. Research in Microbiology, 169(2):78-89.

doi: 10.1016/j.resmic.2017.11.003

Cerna, M., et al. (2003). Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydrate Polymers, 51(4), 383-389.

doi: 10.1016/S0144-8617(02)00259-X

Chen, Y., Mao, W., Wang, B., Zhou, L., Gu, Q., Chen, Y., Zhao, C., Li, N., Wang, C., Shan, J., Yan, M., & Lin, C. (2013). Preparation and characterization of an extracellular polysaccharide produced by the deep-sea fungus Penicillium griseofulvum. Bioresource technology, 132, 178–181.

doi: 10.1016/j.biortech.2012.12.075

Chen, Y., Yao, F., Ming, K., Wang, D., Hu, Y., & Liu, J. (2016). Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules (Basel, Switzerland), 21(12), 1705.

doi:10.3390/molecules21121705

Cheng., J et al. (2016). Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodiacinnamomea. Food Hydrocolloids, 53, 37-45.

doi: 10.1016/j.foodhyd.2014.09.035

Ciucanu, L., & Kerek, F. (1984). A simple and rapid method for the permethylation of carbohydrates. Carbohydrateresearch, 131(2), 209-217.

doi:10.1016/0008-6215(84)85242-8

Corradi da Silva, M. L. et al. (2005). Purification and structural characterisation of (1 to 3; 1 to 6)-β-D-glucans (botryosphaerans) from Botryosphaeriarhodina grown on sucrose and fructose as carbon sources: a comparative study. Carbohydrate polymers, 61(1):10-17.

doi: 10.1016/j.carbpol.2005.01.002

Costanzo, M., et al. (2016). A global genetic interaction network maps a wiring diagram of cellular function. Science (New York, N.Y.), 353(6306), aaf1420.

doi:10.1126/science.aaf1420

Cui, S. W. (2005). Food carbohydrates: Chemistry, physical properties, and applications. Boca Raton: CRC Press.

De Groot, P. W., Ram, A. F., & Klis, F. M. (2005). Features and functions of covalently linked proteins in fungal cell walls. Fungal genetics and biology: FG & B, 42(8), 657–675.

doi: 10.1016/j.fgb.2005.04.002

Ding, X., Hou, Y. L., & Hou, W. R. (2012). Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Boletus speciosus Forst. International journal of biological macromolecules, 50(3), 613–618.

doi: 10.1016/j.ijbiomac.2012.01.021

Donot, F. et al. (2012). Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2), 951-962.

doi: 10.1016/j.carbpol.2011.08.083

Du, B., Yang, Y., Bian, Z., & Xu, B. (2017). Characterization and Anti-Inflammatory Potential of an Exopolysaccharide from Submerged Mycelial Culture of Schizophyllum commune. Frontiers in pharmacology, 8, 252.

doi: 10.3389/fphar.2017.00252

Du., B et al. (2015). An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science & Technology, 41(1), 49-59.

doi: 10.1016/j.tifs.2014.09.002

Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168(4265), 167.

doi: 10.1038/168167a0

Fan, L., Li, J., Deng, K., & Ai, L. (2012). Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydrate polymers, 87, 1849-1854.

doi: 10.1016/j.carbpol.2011.10.018

Feofilova, E.P. (2010). The fungal cell wall: Modern concepts of its composition and biological function. Microbiology 79, 711–720.

doi: 10.1134/S0026261710060019

Fesel, P. H., & Zuccaro, A. (2016). β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal genetics and biology: FG & B, 90, 53–60. doi:10.1016/j.fgb.2015.12.004

Free S. J. (2013). Fungal cell wall organization and biosynthesis. Advances in genetics, 81, 33–82.

doi:10.1016/B978-0-12-407677-8.00002-6

Gow, N., Latge, J. P., & Munro, C. A. (2017). The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology spectrum, 5(3), 10.1128/microbiolspec.FUNK-0035-2016.

doi:10.1128/microbiolspec.FUNK-0035-2016

Guo, S., et al. (2013). Preparation, structural characterization and antioxidant activity of an extracellular polysaccharide produced by the fungus Oidiodendrontruncatum GW. Process Biochemistry, 48(3), 539-544.

doi: 10.1016/j.procbio.2013.01.014

Jindal, N., Khattar, J. S. (2018). Microbial polysaccharides in foodindustry. Academic Press.

Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in plant science, 20(4), 206–211.

doi: 10.1016/j.tplants.2015.01.004

Kulkarni, S., Nene, S., & Joshi, K. (2017). Production of Hydrophobins from fungi. Process biochemistry, 61, 1-11.

doi: 10.1016/j.procbio.2017.06.012

Latgé, J. P., Beauvais, A., & Chamilos, G. (2017). The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence. Annual review of microbiology, 71, 99–116.

doi: 10.1146/annurev-micro-030117-020406

Li, X., & Wang, L. (2016). Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides. International journal of biological macromolecules, 83, 270–276.

doi:10.1016/j.ijbiomac.2015.11.060

Magnelli, P. E., Cipollo, J. F., & Robbins, P. W. (2005). A glucanase-driven fractionation allows redefinition of Schizosaccharomyces pombe cell wall composition and structure: assignment of diglucan. Analytical biochemistry, 336(2), 202–212.

doi: 10.1016/j.ab.2004.09.022

Mahapatra, S., & Banerjee, D. (2013). Fungal exopolysaccharide: production, composition and applications. Microbiology insights, 6, 1–16.

doi:10.4137/MBI.S10957

Moretti, A., & Sarrocco, S. (2015). Fungi. Encyclopedia of Food and Health, 162-168.

doi: 10.1016/B978-0-12-384947-2.00341-X

Nie, S., et al. (2013). Bioactive polysaccharides from Cordycepssinensis: Isolation, structure features and bioactivities. Bioactive Carbohydrates and Dietary Fibre, 1(1), 38-52.

doi: 10.1016/j.bcdf.2012.12.002

Nuanpeng, Sunan, Thanonkeo, Sudarat, Klanrit, Preekamol, & Thanonkeo, Pornthap. (2018). Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. Brazilian Journal of Microbiology, 49(Suppl. 1), 140-150.

doi:10.1016/j.bjm.2017.12.011

Orlandelli, R. C., et al. (2016). Screening of endophytic sources of exopolysaccharides: preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time. Biochimie Open, 2, 33-40.

doi: 10.1016/j.biopen.2016.02.003

Pardo-Planas, O., Prade, R. A., Müller, M., Atiyeh, H. K., & Wilkins, M. R. (2017). Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory. Bioresource technology, 243, 874–882.

doi: 10.1016/j.biortech.2017.06.183

Paulussen, C., Hallsworth, J. E., Álvarez-Pérez, S., Nierman, W. C., Hamill, P. G., Blain, D., Rediers, H., & Lievens, B. (2017). Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microbial biotechnology, 10(2), 296–322.

doi: 10.1111/1751-7915.12367

Pazur, J. H. (1994). Neutral polysaccharides. Carbohydrate analysis: a practical approach. 2th ed. Oxford, U K: Oxford University Press.

Pereira, A. S. et al. (2018). Metodologia da Pesquisa Científica. Santa Maria: UAB/NTE/UFSM, (1), 100-108.

Retrieved from https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf

Qi, G., et al. (2018). Solvents production from cassava by co-culture of Clostridium acetobutylicum and Saccharomyces cerevisiae. Journal of Environmental Chemical Engineering, 6(1), 128-133.

doi: 10.1016/j.jece.2017.11.067

Raghukumar, S. (2017). Fungi: Characteristics and Classification. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham.

Ruthes, A. C., et al. (2013). Fucomannogalactan and glucan from mushroom Amanitamuscaria: Structure and inflammatory pain inhibition. Carbohydratepolymers, 98(1), 761-769.

doi: 10.1016/j.carbpol.2013.06.061

Sánchez, Ó. J., Montoya, S., & Vargas, L. M. (2014). Polysaccharide production by submerged fermentation. Polysaccharides: Bioactivity and Biotechnology, 1-19.

doi: 10.1007/978-3-319-03751-6_39-1

Sanchez, S., & Demain, A. L. (2002). Metabolic regulation of fermentation processes. Enzymeand Microbial Technology, 31(7), 895-906.

doi: 10.1016/S0141-0229(02)00172-2

Sharma, S., Khanna, P. K., & Kapoor, S. (2016). Optimised isolation of polysaccharides from Lentinula edodes strain NCBI JX915793 using response surface methodology and their antibacterial activities. Natural product research, 30(5), 616–621.

doi: 10.1080/14786419.2015.1030741

Shi L. (2016). Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. International journal of biological macromolecules, 92, 37–48.

doi: 10.1016/j.ijbiomac.2016.06.100

Sokolov, S. S., Kalebina, T. S., Agafonov, M. O., Arbatskii, N. P., & Kulaev, I. S. (2002). Comparative analysis of the structural role of proteins and polysaccharides in cell walls of the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Doklady. Biochemistry and biophysics, 384, 172–175.

doi: 10.1023/a:1016080432606

Sunytsya, A., & Novák, M. (2013). Structural diversity of fungal glucans. Carbohydrate polymers, 92(1), 792-809.

doi: 10.1016/j.carbpol.2012.09.077

Tedersoo, L., et al. (2014). Fungal biogeography. Global diversity and geography of soil fungi. Science (New York, N.Y.), 346(6213), 1256688.

doi: 10.1126/science.1256688

Tian, S., Hao, C., Xu, G., Yang, J., & Sun, R. (2017). Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. Journal of food and drug analysis, 25(4), 766–775.

doi:10.1016/j.jfda.2016.08.012

Valasques Junior, G. L., de Lima, F. O., Boffo, E. F., Santos, J. D., da Silva, B. C., & de Assis, S. A. (2014). Extraction optimization and antinociceptive activity of (1→3)-β-d-glucan from Rhodotorulamucilaginosa. Carbohydrate polymers, 105, 293–299. doi:10.1016/j.carbpol.2014.01.064

Valasques Junior, G. L. et al. (2017). The extraction and characterisation of a polysaccharide from Moniliophthoraperniciosa CCMB 0257. Natural product research, 31(14), 1647-1654.

doi: 10.1080/14786419.2017.1285302

Wang, C., Mao, W., Chen, Z., Zhu, W., Chen, Y., Zhao, C., Li, N., Yan, M., Liu, X., & Guo, T. (2013). Purification, structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochemistry, 48, 1395-1401.

doi:10.1016/J.PROCBIO.2013.06.029

Wang, J., Hu, W., Li, L., Huang, X., Liu, Y., Wang, D., & Teng, L. (2017). Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PloS one, 12(6), e0180476.

doi: 10.1371/journal.pone.0180476

Wang, K., Li, W., Rui, X., Li, T., Chen, X., Jiang, M., & Dong, M. (2014). Chemical modification, characterization and bioactivity of a release dexo polysaccharide (r-EPS1) from Lactobacillus plantarum 70810. Glycoconjugate journal, 32 (1-2), 17-27.

doi: 10.1007/s10719-014-9567-1

Wang, L., Liu, H. M., & Qin, G. Y. (2017). Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food chemistry, 234, 314–322.

doi: 10.1016/j.foodchem.2017.05.002

Wang, Z., et al. (2017). Using evolutionary genomics, transcriptomics, and systems biology to reveal gene networks underlying fungal development. Fungal Biology Reviews, 2018. 50-56.

Retrieved from https://par.nsf.gov/servlets/purl/10160177

Wang, Z., et al. (2017). Review on cell models to evaluate the potential antioxidant activity of polysaccharides. Food & function, 8(3), 915-926.

doi: 10.1039/c6fo01315e

Xu, X., et al. (2015). Purification and characterization of a glucan from Bacillus Calmette Guerin and the antitumor activity of its sulfated derivative. Carbohydrate polymers, 128, 138-146.

doi: 10.1016/j.carbpol.2015.04.025

Xu, Z., Li, X., Feng, S., Liu, J., Zhou, L., Yuan, M., & Ding, C. (2016). Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake. International journal of biological macromolecules, 91, 1025–1032.

doi: 10.1016/j.ijbiomac.2016.06.067

Yan, M., Mao, W., Chen, C., Kong, X., Gu, Q., Li, N., Liu, X., Wang, B., Wang, S., & Xiao, B. (2014). Structural elucidation of the exopolysaccharide produced by the mangrove fungus Penicillium solitum. Carbohydrate polymers, 111, 485–491.

doi: 10.1016/j.carbpol.2014.05.013

Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate polymers, 183, 91–101.

doi:10.1016/j.carbpol.2017.12.009

Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate polymers, 183, 91–101.

doi: 10.1016/j.carbpol.2017.12.009

Zhang, G., et al. (2015). Purification and antioxidant effect of novel fungal polysaccharides from the stroma of Cordycepskyushuensis. Industrial Crops and Products, 69, 485-491.

doi: 10.1016/j.indcrop.2015.03.006

Zhang, Y., Liu, D., Fang, L., Zhao, X., Zhou, A., & Xie, J. (2018). A galactomannoglucan derived from Agaricus brasiliensis: Purification, characterization and macrophage activation via MAPK and IκB/NFκB pathways. Food chemistry, 239, 603–611. doi:10.1016/j.foodchem.2017.06.152

Zhao, Y., Fan, J., Wang, C., Feng, X., & Li, C. (2018). Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae. Bioresource technology, 257, 339–343.

doi:10.1016/j.biortech.2018.02.096.

Downloads

Publicado

28/11/2020

Como Citar

VALASQUES JUNIOR, G. L.; CEDRO, P. Évelin P. .; MENDES, T. P. S. .; MIRANDA, A. C. dos A.; CÔRTES FILHO, A. B.; LIMA, D. M. .; BARRETO, M. M. .; PINHEIRO, A. A. F. .; MARQUES, L. M. Caracterização e atividades biológicas de polissacarídeos extraídos da parede celular de fungos filamentosos: uma revisão da literatura atualizada. Research, Society and Development, [S. l.], v. 9, n. 11, p. e62191110217, 2020. DOI: 10.33448/rsd-v9i11.10217. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10217. Acesso em: 27 set. 2024.

Edição

Seção

Ciências Agrárias e Biológicas