Caracterización y actividades biológicas de polisacáridos extraídos de la pared celular de hongos filamentosos: revisión de la literatura actualizada

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.10217

Palabras clave:

Polisacáridos; Hongos filamentosos; Métodos de catacterización.

Resumen

Los hongos filamentosos son organismos eucariotas con diversas aplicaciones industriales y farmacéuticas. Los polisacáridos son componentes de la pared celular de los hongos y otros organismos, y se han informado como productos con numerosas actividades biológicas y aplicaciones en los campos industrial y médico. Este estudio es una revisión narrativa sobre los métodos de caracterización y actividad biológica de polisacáridos aislados de la pared celular de hongos filamentosos. Los polisacáridos que se encuentran con mayor frecuencia en las paredes de las células de los hongos son la quitina, los glucanos y los galactomananos. Estos polisacáridos pueden contener diferentes tipos de enlaces (1-3,1-4, 1-6) de tipos α o β, así como varios tamaños moleculares, y estas variaciones pueden ser responsables de la variedad de actividad biológica que tienen estos polímeros. Los métodos más comunes aplicados para la caracterización de polisacáridos incluyen espectrometría infrarroja, resonancia magnética nuclear y cromatografía de gases acoplada a espectrometría de masas. Las actividades biológicas atribuidas con mayor frecuencia a los polisacáridos de hongos filamentosos incluyen antioxidantes, antiinflamatorios, inmunomoduladores, antinociceptivos, antitumorales e hipoglucémicos. Debido a la variedad de géneros y especies de hongos filamentosos existentes, los estudios de caracterización y la actividad biológica son necesarios para identificar polisacáridos con potencial actividad biológica y que puedan utilizarse con fines medicinales.

Citas

Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Ahmed, Z. (2010). Extraction and characterization of beta-D-glucan from oat for industrial utilization. International journal of biological macromolecules, 46(3), 304–309.

doi: 10.1016/j.ijbiomac.2010.01.002

Bordenave, N., Janaswamy, S., & Yao., Y. (2014). Influence of glucan structure on the swelling and leaching properties of starch microparticles. Carbohydrate polymers, 103, 234-243.

doi: 10.1016/j.carbpol.2013.11.031

Bowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays 28(8), 799-808.

doi: 10.1002/bies.20441

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248–254.

doi: 10.1006/abio.1976.9999

Brandl, J., & Andersen, M. R. (2017). Aspergilli: Models for Systems Biology in Filamentous Fungi. Current Opinion in Systems Biology, 6, 67-73.

doi: 10.1016/j.coisb.2017.09.005

Bruice, P. Y. (2004). Química Orgânica, São Paulo: Ed. Prendice Hall.

Castrillo M., Luque, E. M., Pardo-Medina., J, et al. (2018). Transcriptional basis of enhanced photoinduction of carotenoid biosynthesis at low temperature in the fungus Neurospora crassa. Research in Microbiology, 169(2):78-89.

doi: 10.1016/j.resmic.2017.11.003

Cerna, M., et al. (2003). Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydrate Polymers, 51(4), 383-389.

doi: 10.1016/S0144-8617(02)00259-X

Chen, Y., Mao, W., Wang, B., Zhou, L., Gu, Q., Chen, Y., Zhao, C., Li, N., Wang, C., Shan, J., Yan, M., & Lin, C. (2013). Preparation and characterization of an extracellular polysaccharide produced by the deep-sea fungus Penicillium griseofulvum. Bioresource technology, 132, 178–181.

doi: 10.1016/j.biortech.2012.12.075

Chen, Y., Yao, F., Ming, K., Wang, D., Hu, Y., & Liu, J. (2016). Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules (Basel, Switzerland), 21(12), 1705.

doi:10.3390/molecules21121705

Cheng., J et al. (2016). Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodiacinnamomea. Food Hydrocolloids, 53, 37-45.

doi: 10.1016/j.foodhyd.2014.09.035

Ciucanu, L., & Kerek, F. (1984). A simple and rapid method for the permethylation of carbohydrates. Carbohydrateresearch, 131(2), 209-217.

doi:10.1016/0008-6215(84)85242-8

Corradi da Silva, M. L. et al. (2005). Purification and structural characterisation of (1 to 3; 1 to 6)-β-D-glucans (botryosphaerans) from Botryosphaeriarhodina grown on sucrose and fructose as carbon sources: a comparative study. Carbohydrate polymers, 61(1):10-17.

doi: 10.1016/j.carbpol.2005.01.002

Costanzo, M., et al. (2016). A global genetic interaction network maps a wiring diagram of cellular function. Science (New York, N.Y.), 353(6306), aaf1420.

doi:10.1126/science.aaf1420

Cui, S. W. (2005). Food carbohydrates: Chemistry, physical properties, and applications. Boca Raton: CRC Press.

De Groot, P. W., Ram, A. F., & Klis, F. M. (2005). Features and functions of covalently linked proteins in fungal cell walls. Fungal genetics and biology: FG & B, 42(8), 657–675.

doi: 10.1016/j.fgb.2005.04.002

Ding, X., Hou, Y. L., & Hou, W. R. (2012). Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Boletus speciosus Forst. International journal of biological macromolecules, 50(3), 613–618.

doi: 10.1016/j.ijbiomac.2012.01.021

Donot, F. et al. (2012). Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2), 951-962.

doi: 10.1016/j.carbpol.2011.08.083

Du, B., Yang, Y., Bian, Z., & Xu, B. (2017). Characterization and Anti-Inflammatory Potential of an Exopolysaccharide from Submerged Mycelial Culture of Schizophyllum commune. Frontiers in pharmacology, 8, 252.

doi: 10.3389/fphar.2017.00252

Du., B et al. (2015). An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science & Technology, 41(1), 49-59.

doi: 10.1016/j.tifs.2014.09.002

Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168(4265), 167.

doi: 10.1038/168167a0

Fan, L., Li, J., Deng, K., & Ai, L. (2012). Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydrate polymers, 87, 1849-1854.

doi: 10.1016/j.carbpol.2011.10.018

Feofilova, E.P. (2010). The fungal cell wall: Modern concepts of its composition and biological function. Microbiology 79, 711–720.

doi: 10.1134/S0026261710060019

Fesel, P. H., & Zuccaro, A. (2016). β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal genetics and biology: FG & B, 90, 53–60. doi:10.1016/j.fgb.2015.12.004

Free S. J. (2013). Fungal cell wall organization and biosynthesis. Advances in genetics, 81, 33–82.

doi:10.1016/B978-0-12-407677-8.00002-6

Gow, N., Latge, J. P., & Munro, C. A. (2017). The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology spectrum, 5(3), 10.1128/microbiolspec.FUNK-0035-2016.

doi:10.1128/microbiolspec.FUNK-0035-2016

Guo, S., et al. (2013). Preparation, structural characterization and antioxidant activity of an extracellular polysaccharide produced by the fungus Oidiodendrontruncatum GW. Process Biochemistry, 48(3), 539-544.

doi: 10.1016/j.procbio.2013.01.014

Jindal, N., Khattar, J. S. (2018). Microbial polysaccharides in foodindustry. Academic Press.

Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in plant science, 20(4), 206–211.

doi: 10.1016/j.tplants.2015.01.004

Kulkarni, S., Nene, S., & Joshi, K. (2017). Production of Hydrophobins from fungi. Process biochemistry, 61, 1-11.

doi: 10.1016/j.procbio.2017.06.012

Latgé, J. P., Beauvais, A., & Chamilos, G. (2017). The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence. Annual review of microbiology, 71, 99–116.

doi: 10.1146/annurev-micro-030117-020406

Li, X., & Wang, L. (2016). Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides. International journal of biological macromolecules, 83, 270–276.

doi:10.1016/j.ijbiomac.2015.11.060

Magnelli, P. E., Cipollo, J. F., & Robbins, P. W. (2005). A glucanase-driven fractionation allows redefinition of Schizosaccharomyces pombe cell wall composition and structure: assignment of diglucan. Analytical biochemistry, 336(2), 202–212.

doi: 10.1016/j.ab.2004.09.022

Mahapatra, S., & Banerjee, D. (2013). Fungal exopolysaccharide: production, composition and applications. Microbiology insights, 6, 1–16.

doi:10.4137/MBI.S10957

Moretti, A., & Sarrocco, S. (2015). Fungi. Encyclopedia of Food and Health, 162-168.

doi: 10.1016/B978-0-12-384947-2.00341-X

Nie, S., et al. (2013). Bioactive polysaccharides from Cordycepssinensis: Isolation, structure features and bioactivities. Bioactive Carbohydrates and Dietary Fibre, 1(1), 38-52.

doi: 10.1016/j.bcdf.2012.12.002

Nuanpeng, Sunan, Thanonkeo, Sudarat, Klanrit, Preekamol, & Thanonkeo, Pornthap. (2018). Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. Brazilian Journal of Microbiology, 49(Suppl. 1), 140-150.

doi:10.1016/j.bjm.2017.12.011

Orlandelli, R. C., et al. (2016). Screening of endophytic sources of exopolysaccharides: preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time. Biochimie Open, 2, 33-40.

doi: 10.1016/j.biopen.2016.02.003

Pardo-Planas, O., Prade, R. A., Müller, M., Atiyeh, H. K., & Wilkins, M. R. (2017). Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory. Bioresource technology, 243, 874–882.

doi: 10.1016/j.biortech.2017.06.183

Paulussen, C., Hallsworth, J. E., Álvarez-Pérez, S., Nierman, W. C., Hamill, P. G., Blain, D., Rediers, H., & Lievens, B. (2017). Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microbial biotechnology, 10(2), 296–322.

doi: 10.1111/1751-7915.12367

Pazur, J. H. (1994). Neutral polysaccharides. Carbohydrate analysis: a practical approach. 2th ed. Oxford, U K: Oxford University Press.

Pereira, A. S. et al. (2018). Metodologia da Pesquisa Científica. Santa Maria: UAB/NTE/UFSM, (1), 100-108.

Retrieved from https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf

Qi, G., et al. (2018). Solvents production from cassava by co-culture of Clostridium acetobutylicum and Saccharomyces cerevisiae. Journal of Environmental Chemical Engineering, 6(1), 128-133.

doi: 10.1016/j.jece.2017.11.067

Raghukumar, S. (2017). Fungi: Characteristics and Classification. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham.

Ruthes, A. C., et al. (2013). Fucomannogalactan and glucan from mushroom Amanitamuscaria: Structure and inflammatory pain inhibition. Carbohydratepolymers, 98(1), 761-769.

doi: 10.1016/j.carbpol.2013.06.061

Sánchez, Ó. J., Montoya, S., & Vargas, L. M. (2014). Polysaccharide production by submerged fermentation. Polysaccharides: Bioactivity and Biotechnology, 1-19.

doi: 10.1007/978-3-319-03751-6_39-1

Sanchez, S., & Demain, A. L. (2002). Metabolic regulation of fermentation processes. Enzymeand Microbial Technology, 31(7), 895-906.

doi: 10.1016/S0141-0229(02)00172-2

Sharma, S., Khanna, P. K., & Kapoor, S. (2016). Optimised isolation of polysaccharides from Lentinula edodes strain NCBI JX915793 using response surface methodology and their antibacterial activities. Natural product research, 30(5), 616–621.

doi: 10.1080/14786419.2015.1030741

Shi L. (2016). Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. International journal of biological macromolecules, 92, 37–48.

doi: 10.1016/j.ijbiomac.2016.06.100

Sokolov, S. S., Kalebina, T. S., Agafonov, M. O., Arbatskii, N. P., & Kulaev, I. S. (2002). Comparative analysis of the structural role of proteins and polysaccharides in cell walls of the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Doklady. Biochemistry and biophysics, 384, 172–175.

doi: 10.1023/a:1016080432606

Sunytsya, A., & Novák, M. (2013). Structural diversity of fungal glucans. Carbohydrate polymers, 92(1), 792-809.

doi: 10.1016/j.carbpol.2012.09.077

Tedersoo, L., et al. (2014). Fungal biogeography. Global diversity and geography of soil fungi. Science (New York, N.Y.), 346(6213), 1256688.

doi: 10.1126/science.1256688

Tian, S., Hao, C., Xu, G., Yang, J., & Sun, R. (2017). Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. Journal of food and drug analysis, 25(4), 766–775.

doi:10.1016/j.jfda.2016.08.012

Valasques Junior, G. L., de Lima, F. O., Boffo, E. F., Santos, J. D., da Silva, B. C., & de Assis, S. A. (2014). Extraction optimization and antinociceptive activity of (1→3)-β-d-glucan from Rhodotorulamucilaginosa. Carbohydrate polymers, 105, 293–299. doi:10.1016/j.carbpol.2014.01.064

Valasques Junior, G. L. et al. (2017). The extraction and characterisation of a polysaccharide from Moniliophthoraperniciosa CCMB 0257. Natural product research, 31(14), 1647-1654.

doi: 10.1080/14786419.2017.1285302

Wang, C., Mao, W., Chen, Z., Zhu, W., Chen, Y., Zhao, C., Li, N., Yan, M., Liu, X., & Guo, T. (2013). Purification, structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochemistry, 48, 1395-1401.

doi:10.1016/J.PROCBIO.2013.06.029

Wang, J., Hu, W., Li, L., Huang, X., Liu, Y., Wang, D., & Teng, L. (2017). Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PloS one, 12(6), e0180476.

doi: 10.1371/journal.pone.0180476

Wang, K., Li, W., Rui, X., Li, T., Chen, X., Jiang, M., & Dong, M. (2014). Chemical modification, characterization and bioactivity of a release dexo polysaccharide (r-EPS1) from Lactobacillus plantarum 70810. Glycoconjugate journal, 32 (1-2), 17-27.

doi: 10.1007/s10719-014-9567-1

Wang, L., Liu, H. M., & Qin, G. Y. (2017). Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food chemistry, 234, 314–322.

doi: 10.1016/j.foodchem.2017.05.002

Wang, Z., et al. (2017). Using evolutionary genomics, transcriptomics, and systems biology to reveal gene networks underlying fungal development. Fungal Biology Reviews, 2018. 50-56.

Retrieved from https://par.nsf.gov/servlets/purl/10160177

Wang, Z., et al. (2017). Review on cell models to evaluate the potential antioxidant activity of polysaccharides. Food & function, 8(3), 915-926.

doi: 10.1039/c6fo01315e

Xu, X., et al. (2015). Purification and characterization of a glucan from Bacillus Calmette Guerin and the antitumor activity of its sulfated derivative. Carbohydrate polymers, 128, 138-146.

doi: 10.1016/j.carbpol.2015.04.025

Xu, Z., Li, X., Feng, S., Liu, J., Zhou, L., Yuan, M., & Ding, C. (2016). Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake. International journal of biological macromolecules, 91, 1025–1032.

doi: 10.1016/j.ijbiomac.2016.06.067

Yan, M., Mao, W., Chen, C., Kong, X., Gu, Q., Li, N., Liu, X., Wang, B., Wang, S., & Xiao, B. (2014). Structural elucidation of the exopolysaccharide produced by the mangrove fungus Penicillium solitum. Carbohydrate polymers, 111, 485–491.

doi: 10.1016/j.carbpol.2014.05.013

Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate polymers, 183, 91–101.

doi:10.1016/j.carbpol.2017.12.009

Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate polymers, 183, 91–101.

doi: 10.1016/j.carbpol.2017.12.009

Zhang, G., et al. (2015). Purification and antioxidant effect of novel fungal polysaccharides from the stroma of Cordycepskyushuensis. Industrial Crops and Products, 69, 485-491.

doi: 10.1016/j.indcrop.2015.03.006

Zhang, Y., Liu, D., Fang, L., Zhao, X., Zhou, A., & Xie, J. (2018). A galactomannoglucan derived from Agaricus brasiliensis: Purification, characterization and macrophage activation via MAPK and IκB/NFκB pathways. Food chemistry, 239, 603–611. doi:10.1016/j.foodchem.2017.06.152

Zhao, Y., Fan, J., Wang, C., Feng, X., & Li, C. (2018). Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae. Bioresource technology, 257, 339–343.

doi:10.1016/j.biortech.2018.02.096.

Descargas

Publicado

28/11/2020

Cómo citar

VALASQUES JUNIOR, G. L.; CEDRO, P. Évelin P. .; MENDES, T. P. S. .; MIRANDA, A. C. dos A.; CÔRTES FILHO, A. B.; LIMA, D. M. .; BARRETO, M. M. .; PINHEIRO, A. A. F. .; MARQUES, L. M. Caracterización y actividades biológicas de polisacáridos extraídos de la pared celular de hongos filamentosos: revisión de la literatura actualizada. Research, Society and Development, [S. l.], v. 9, n. 11, p. e62191110217, 2020. DOI: 10.33448/rsd-v9i11.10217. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10217. Acesso em: 24 dic. 2024.

Número

Sección

Ciencias Agrarias y Biológicas