Quantitative evaluation of strain ultrasound elastography of thyroid nodules: a new classification perspective

Authors

DOI:

https://doi.org/10.33448/rsd-v9i12.10557

Keywords:

Elastography; Thyroid nodules; Ultrasound of thyroid.

Abstract

Introduction: Classically, thyroid nodules are initially evaluated by ultrasonography in Mode B. Despite being sensitive for the diagnosis of NT, it does not take into account the stiffness of the nodule, an important characteristic that is related to its malignancy. In this sense, elastography has been used as an instrument to assist in the diagnosis of thyroid nodules. With this in mind, the aim of the present study is to qualitatively assess the performance of manual pressure elastography in the differential diagnosis of malignant and benign thyroid nodules in adults. Method: This is a prospective, observational study, which included patients who had thyroid nodules and required fine needle aspiration (FNAB). The elastography was obtained in real time from the US in Mode B. The percentage of the nodule's rigid area was calculated using the ImageJ software. Results: The study included 41 patients, 87.8% female. Age ranged from 18 to 75 years, with an average of 46.4 years (SD: 13.57). Most of the nodules were classified as TI-RADS 3, 53.7%. As for the Bethesda classification, 82.9% of the sample was classified as Bethesda 2 (benign nodule). The percentage of rigid area (% AR) ranged from 3% to 73%, with an average of 28.73% (SD: 18.15). Highly suspicious nodules from the TI-RADS classification had a higher AR% (51.6%). Regarding cytological analysis, nodules characterized as benign had an average AR% of 24.23% (SD: 13.66), while malignant ones of 55% (SD: 19.94), a difference of 30.77% , which proved to be statistically significant (p <0.001). Conclusion: The quantitative evaluation of Strain-type elastography based on the% AR evaluation proved to be useful to discriminate between benign and malignant nodules and is presented as a tool that can complement the assessment of thyroid nodules.

References

Asteria, C., Giovanardi, A., Pizzocaro, A., Cozzaglio, L., Morabito, A., Somalvico, F., & Zoppo, A. (2008). US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid, 18(5), 523–531. https://doi.org/10.1089/thy.2007.0323

Azizi, G., Keller, J. M., Mayo, M. L., Piper, K., Puett, D., Earp, K. M., & Malchoff, C. D. (2015). Thyroid Nodules and Shear Wave Elastography: A New Tool in Thyroid Cancer Detection. Ultrasound in Medicine & Biology, 41(11), 2855–2865. https://doi.org/10.1016/j.ultrasmedbio.2015.06.021

Bojunga, J., Herrmann, E., Meyer, G., Weber, S., Zeuzem, S., & Friedrich-Rust, M. (2010). Real-Time Elastography for the Differentiation of Benign and Malignant Thyroid Nodules: A Meta-Analysis. Thyroid, 20(10), 1145–1150. https://doi.org/10.1089/thy.2010.0079

Cibas, E. S., & Ali, S. Z. (2017). The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid, 27(11), 1341–1346. https://doi.org/10.1089/thy.2017.0500

Chaves, J. P. P. ., Pires, I. L. P. ., Chaves Júnior, M. A. ., & Favero, P. . (2020). Avaliação da eficácia da elastografia na diferenciação de nódulos mamários . Research, Society and Development, 9(10), e9479109374. https://doi.org/10.33448/rsd-v9i10.9374

Come, S. E. (2006). A 62-Year-Old Woman With a New Diagnosis of Breast Cancer. JAMA, 295(12), 1434. https://doi.org/10.1001/jama.295.12.1434

Fisher, S. B., & Perrier, N. D. (2018). The incidental thyroid nodule. CA: A Cancer Journal for Clinicians, 68(2), 97–105. https://doi.org/10.3322/caac.21447

Franco Uliaque, C., Pardo Berdún, F. J., Laborda Herrero, R., & Pérez Lórenz, C. (2016). Utilidad de la elastografía semicuantitativa para predecir la malignidad de los nódulos tiroideos. Radiologia, 58(5), 366–372. https://doi.org/10.1016/j.rx.2016.05.001

Gharib, H., Papini, E., Paschke, R., Duick, D. S., Valcavi, R., Hegedüs, L., & Vitti, P. (2010). American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and EuropeanThyroid Association Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules. Endocrine Practice : Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 16 Suppl 1(June 2010), 1–43. https://doi.org/10.4158/10024.GL

Haugen, B. R., Alexander, E. K., Bible, K. C., Doherty, G. M., Mandel, S. J., Nikiforov, Y. E., Pacini, F., Randolph, G. W., Sawka, A. M., Schlumberger, M., Schuff, K. G., Sherman, S. I., Sosa, J. A., Steward, D. L., Tuttle, R. M., & Wartofsky, L. (2016). 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 26(1), 1–133. https://doi.org/10.1089/thy.2015.0020

Hegedüs, L. (2004). The Thyroid Nodule. The New England Journal of Medicine, 335(10), 1764–1771.

Hu, X., Liu, Y., & Qian, L. (2017). Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules. Medicine (United States), 96(43), 1–6. https://doi.org/10.1097/MD.0000000000008282

Kandemirli, S. G., Bayramoglu, Z., Caliskan, E., Sari, Z. N. A., & Adaletli, I. (2018). Quantitative assessment of thyroid gland elasticity with shear-wave elastography in pediatric patients with Hashimoto’s thyroiditis. Journal of Medical Ultrasonics, 45(3), 417–423. https://doi.org/10.1007/s10396-018-0859-0

Laurberg, P., Pedersen, I. B., Knudsen, N., Ovesen, L., & Andersen, S. (2001). Environmental Iodine Intake Affects the Type of Nonmalignant Thyroid Disease. Thyroid, 11(5), 457–469. https://doi.org/10.1089/105072501300176417

Lerner, R. M., Huang, S. R., & Parker, K. J. (1990). “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound in Medicine and Biology, 16(3), 231–239. https://doi.org/10.1016/0301-5629(90)90002-T

Liu, J., Zhang, Y., Ji, Y., Wan, Q., & Dun, G. (2018). The value of shear wave elastography in diffuse thyroid disease. Clinical Imaging, 49(2017), 187–192. https://doi.org/10.1016/j.clinimag.2018.03.019

Moon, H. J., Sung, J. M., Kim, E.-K., Yoon, J. H., Youk, J. H., & Kwak, J. Y. (2012). Diagnostic Performance of Gray-Scale US and Elastography in Solid Thyroid Nodules. Radiology, 262(3), 1002–1013. https://doi.org/10.1148/radiol.11110839

Niedziela, M., & Korman, E. (2002). Thyroid carcinoma in a fourteen-year-old boy with graves disease. Medical and Pediatric Oncology, 38(4), 290–291. https://doi.org/10.1002/mpo.1330

Ophir, J., Alam, S. K., Garra, B., Kallel, F., Konofagou, E., Krouskop, T., & Varghese, T. (1999). Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 213(3), 203–233. https://doi.org/10.1243/0954411991534933

Rago, T., Santini, F., Scutari, M., Pinchera, A., & Vitti, P. (2007). Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. The Journal of Clinical Endocrinology and Metabolism, 92(1), 2917–2922. https://doi.org/10.1530/eje.0.1380041

Redman, R., Zalaznick, H., Mazzaferri, E. L., & Massoll, N. A. (2006). The impact of assessing specimen adequacy and number of needle passes for fine-needle aspiration biopsy of thyroid nodules. Thyroid, 16(1), 55–60. https://doi.org/10.1089/thy.2006.16.55

Seib, C. D., & Sosa, J. A. (2019). Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinology and Metabolism Clinics of North America, 48(1), 23–35. https://doi.org/10.1016/j.ecl.2018.10.002

Sengul, D., Sengul, I., & Van Slycke, S. (2019). Risk stratification of the thyroid nodule with Bethesda indeterminate cytology, category III, IV, V on the one surgeon-performed US-guided fine-needle aspiration with 27-gauge needle, verified by histopathology of thyroidectomy: the additional value of on. Acta Chirurgica Belgica, 119(1), 38–46. https://doi.org/10.1080/00015458.2018.1551769

Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9–29. https://doi.org/10.3322/caac.21208

Sigrist, R. M. S., Liau, J., Kaffas, A. El, Chammas, M. C., & Willmann, J. K. (2017). Ultrasound elastography: Review of techniques and clinical applications. Theranostics, 7(5), 1303–1329. https://doi.org/10.7150/thno.18650

Solbiati, L., Osti, V., Cova, L., & Tonolini, M. (2001). Ultrasound of thyroid, parathyroid glands and neck lymph nodes. European Radiology, 11(12), 2411–2424. https://doi.org/10.1007/s00330-001-1163-7

Tessler, F. N., Middleton, W. D., Grant, E. G., Hoang, J. K., Berland, L. L., Teefey, S. A., Cronan, J. J., Beland, M. D., Desser, T. S., Frates, M. C., Hammers, L. W., Hamper, U. M., Langer, J. E., Reading, C. C., Scoutt, L. M., & Stavros, A. T. (2017). ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. Journal of the American College of Radiology, 14(5), 587–595. https://doi.org/10.1016/j.jacr.2017.01.046

Trimboli, P., Guglielmi, R., Monti, S., Misischi, I., Graziano, F., Nasrollah, N., Amendola, S., Morgante, S. N., Deiana, M. G., Valabrega, S., Toscano, V., & Papini, E. (2012). Ultrasound Sensitivity for Thyroid Malignancy Is Increased by Real-Time Elastography: A Prospective Multicenter Study. The Journal of Clinical Endocrinology & Metabolism, 97(12), 4524–4530. https://doi.org/10.1210/jc.2012-2951

Vilar, H., Carrilho, F., Borges, F., Limbert, E., Rodrigues, F., Oliveira, M. J., & De Castro, J. J. (2005). Diagnóstico e tratamento do nódulo solitário da tiróide: Estudo de avaliação em Portugal. Acta Medica Portuguesa, 18(6), 403–408.

Wang, H. X., Lu, F., Xu, X. H., Zhou, P., Du, L. Y., Zhang, Y., Ding, S. S., Shi, H., Wang, D., Xu, H. X., & Zhang, Y. F. (2020). Diagnostic Performance Evaluation of Practice Guidelines, Elastography and Their Combined Results for Thyroid Nodules: A Multicenter Study. Ultrasound in Medicine and Biology, 46(8), 1916–1927. https://doi.org/10.1016/j.ultrasmedbio.2020.03.031

Yang, B. R., Kim, E. K., Moon, H. J., Yoon, J. H., Park, V. Y., & Kwak, J. Y. (2018). Qualitative and Semiquantitative Elastography for the Diagnosis of Intermediate Suspicious Thyroid Nodules Based on the 2015 American Thyroid Association Guidelines. Journal of Ultrasound in Medicine, 37(4), 1007–1014. https://doi.org/10.1002/jum.14449

Yoo, M. H., Kim, H. J., Choi, I. H., Park, S., Kim, S. J., Park, H. K., Byun, D. W., & Suh, K. (2020). Shear wave elasticity by tracing total nodule showed high reproducibility and concordance with fibrosis in thyroid cancer. BMC Cancer, 20(1), 1–9. https://doi.org/10.1186/s12885-019-6437-z

Zhan, J., Jin, J.-M., Diao, X.-H., & Chen, Y. (2015). Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules—A meta-analysis. European Journal of Radiology, 84(11), 2181–2186. https://doi.org/10.1016/j.ejrad.2015.07.015

Published

12/12/2020

How to Cite

BERNARDES, A. J. de M. .; PIRES, I. L. P. .; SOUZA, M. R. de .; DOMICILIANO, F. A. .; FÁVERO, P. P. . Quantitative evaluation of strain ultrasound elastography of thyroid nodules: a new classification perspective. Research, Society and Development, [S. l.], v. 9, n. 12, p. e2491210557, 2020. DOI: 10.33448/rsd-v9i12.10557. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10557. Acesso em: 14 nov. 2024.

Issue

Section

Health Sciences