Coculture of white rot fungi enhance laccase activity and its dye decolorization capacity

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10643

Keywords:

Basidiomycota; Cocultivation; Decolorization; Laccase; Textile dyes.

Abstract

Fungal cocultures can promote complex interactions that result in physiological and biochemical alterations that favor the synergic and more efficient action of extracellular enzymes such as laccase. Thus, coculture can be used as a strategy to increase enzymatic activity, dye degradation, and bioremediation of textile effluents. This study aimed to evaluate the coculture effect of Lentinus crinitus, Pleurotus ostreatus, Pycnoporus sanguineus, and Trametes polyzona on laccase activity, mycelial biomass production, and in vitro decolorization of azo, anthraquinone, and triphenylmethane dyes. The species were cultivated in liquid medium in monoculture and coculture in paired combinations for 15 days to determine the laccase activity and produced mycelial biomass. The enzymatic extracts of fungal cultivations were used in decolorization tests of reactive blue 220 (RB220), malachite green (MG), and remazol brilliant blue R (RBBR). Pleurotus-Trametes, Lentinus-Pleurotus, and Lentinus-Trametes cocultures increase laccase activity compared to respective monocultures. Lentinus-Pycnoporus, Lentinus-Trametes, Lentinus-Pleurotus, and Pleurotus-Trametes cocultures stimulate mycelial biomass production in relation to their respective monocultures. The enzymatic extracts of monocultures and cocultures promoted the decolorization of all dyes. RB220 dye presented fast decolorization. In 24 h, all extracts reached maximum decolorization and the greatest color reduction percentage was 90% for Pleurotus-Trametes coculture extract. Pleurotus-Trametes extract also increased the decolorization of MG and RBBR dyes when compared to their respective monocultures in 48 h and 72 h, respectively. However, RBBR dye presented the greatest resistance to decolorization.

References

Bader, J., Mast-Gerlach, E., Popović, M., Bajpai, R., & Stahl, U. (2009). Relevance of microbial coculture fermentations in biotechnology. Journal of Applied Microbiology, 109 (2), 371–387.

Boddy, L. (2000). Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiology Ecology, 31 (3), 185–194.

Cardoso, B. K., Linde, G. A., Colauto, N. B. & Valle, J. S. (2018). Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatalysis and Agricultural Biotechnology, 16, 558–563.

Chan-Cupul, W., Heredia-Abarca, G. & Rodríguez-Vázquez, R. (2016). Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. Journal of Environmental Science and Health, Part B, 51 (5), 298–308.

Chander, M., Arora, D. S. & Bath, H. K. (2004). Biodecolourisation of some industrial dyes by white-rot fungi. Journal of Industrial Microbiology & Biotechnology, 31 (2), 94–97.

Chi, Y., Hatakka. A. & Maijala, P. (2007). Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? International Biodeterioration & Biodegradation, 59 (1), 32–39.

Dwivedi, P., Vivekanand, V., Pareek, N., Sharma, A. & Singh, R. P. (2011). Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. New Biotechnology, 28 (6), 616–626.

Eichlerová, I., Homolka, L., Benada, O., Kofroňová, O., Hubálek, T. & Nerud, F. (2007). Decolorization of Orange G and Remazol Brilliant Blue R by the white rot fungus Dichomitus squalens: Toxicological evaluation and morphological study. Chemosphere, 69 (5), 795–802.

Fernández-Fueyo, E., Ruiz-Dueñas, F.J., Martínez, M., Romero, A., Hammel, K. E., Medrano, F. & Martínez, A. T. (2014). Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnology for Biofuels. 7, 2.

Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S. & Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67 (3), 369–385.

Hiscox, J., Baldrian, P., Rogers, H. J. & Boddy, L. (2010). Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genetics and Biology, 47 (6), 562–571.

Husain, M. & Husain, Q. (2008). Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: A Review. Critical Reviews in Environmental Science and Technology, 38 (1), 1–42.

Krishnamoorthy, R., Jose, P. A., Ranjith, M., Anandham, R., Suganya, K., Prabhakaran, J., Thiyageshwari, S., Johnson, J., Gopal, N. & Kumutha, K. (2018). Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3. Journal of Environmental Chemical Engineering, 6 (1), 588–595.

Kumar, V., Singh, D., Sangwan, P. & Gill, P. K. (2014). Global market scenario of industrial enzymes, in: Benival, V. & Sharma, K.A. (Eds.), Industrial Enzymes: Trends, Scope and Relevance. New York: E-Publishing Inc.

Kumari, S. & Naraian, R. (2016). Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology. Journal of Environmental Management, 180, 172–179.

Luo, F., Zhong, Z., Liu, L., Igarashi, Y., Xie, D. & Li, N. (2017). Metabolomic differential analysis of interspecific interactions among white rot fungi Trametes versicolor, Dichomitus squalens and Pleurotus ostreatus. Scientific Reports, 7, 5265.

Magalhães, D. B., Carvalho, M. E. A. D., Bon, E., Neto, J. S. A. & Kling, S. H. (1996). Colorimetric assay for lignin peroxidase activity determination using methylene blue as substrate. Biotechnology Techniques, 10, 273–276.

Mali, T., Kuuskeri, J., Shah, F. & Lundell, T. K. (2017). Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes. Plos One, 12 (9), e0185171.

Marim, R. A., Avelino, K. V., Linde, G. A., Colauto, N. B. & Valle, J.S. (2018). Lentinus crinitus strains respond differently to cultivation pH and temperature. Genetics and Molecular Research, 17 (1), gmr16039885.

Martínková, L., Kotik, M., Marková, E. & Homolka, L. (2016). Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. Chemosphere, 149, 373–382.

Moreira-Neto, S., Mussatto, S., Machado, K. & Milagres, A. (2013). Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Letters in Applied Microbiology, 56 (4), 283–290.

Pereira, A. S., Shitsuka, D. M., Parreira, F. B., & Shitsuka, R. (2018). Metodologia da pesquisa científica [recurso eletrônico[eBook]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computa cao_MetodologiaPesquisa-Cientifica.pdf?sequence=1.

Przystaś, W., Zabłocka-Godlewska, E. & Grabińska-Sota, E. (2013). Effectiveness of dyes removal by mixed fungal cultures and toxicity of their metabolites. Water, Air, & Soil Pollution, 224, 1534.

Rivera-Hoyos, C. M., Morales-Álvarez, E. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., Rodríguez-Vázquez, R. & Delgado-Boada, J. M. (2013). Fungal laccases. Fungal Biology Reviews, 27 (3-4), 67–82.

Santana, T. T., Linde, G. A., Colauto, N. B. & Valle, J. S. (2018). Metallic-aromatic compounds synergistically induce Lentinus crinitus laccase production. Biocatalysis and Agricultural Biotechnology, 16, 625–630.

Score, A. J., Palfreyman, J. W. & White, N. A. (1997). Extracellular phenoloxidase and peroxidase enzyme production during interspecific fungal interactions. International Biodeterioration & Biodegradation, 39 (2-3), 225–233.

Sen, S. K., Raut, S., Bandyopadhyay, P. & Raut, S. (2016). Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 30 (3), 112–133.

Sharma, A., Jain, K. K., Jain, A., Kidwai, M. & Kuhad, R. C. (2018). Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Applied Microbiology and Biotechnology, 102 (24), 10327–10343.

Valle, J. S., Vandenberghe, L. P. S., Santana, T. T., Linde, G. A., Colauto, N. B. & Soccol, C. R. (2014). Optimization of Agaricus blazei laccase production by submerged cultivation with sugarcane molasses. African Journal of Microbiology Research, 8 (9), 939–946.

Verma, P. & Madamwar, D. (2002). Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Applied Biochemistry and Biotechnology, 102, 109–118.

Vikrant, K., Giri, B.S ., Raza, N., Roy, K., Kim, K-H., Rai, B. N. & Singh, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367.

Wariish, H., Valli, K. & Gold, M. H. (1992). Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. Journal of Biological Chemistry, 267 (33), 23688-23695.

Wesenberg, D. Kyriakides, I. & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22 (1-2), 161–187.

Yang, W., Guo, F. & Wan, Z. (2013). Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi Journal of Biological Sciences, 20 (4), 333–338.

Zhang, H., Hong, Y. Z., Xiao, Y. Z., Yuan, J., Tu, X. M. & Zhang, X. Q. (2006). Efficient production of laccases by Trametes sp. AH28-2 in cocultivation with a Trichoderma strain. Applied Microbiology and Biotechnology, 73, 89–94.

Downloads

Published

06/12/2020

How to Cite

AVELINO, K. V.; HALABURA, M. I. W.; MARIM, R. A.; ARAÚJO, N. L.; NUNES, M. G. I. F.; SILVA, D. L. G.; COLAUTO, G. A. L.; COLAUTO, N. B.; VALLE, J. S. do. Coculture of white rot fungi enhance laccase activity and its dye decolorization capacity. Research, Society and Development, [S. l.], v. 9, n. 11, p. e88191110643, 2020. DOI: 10.33448/rsd-v9i11.10643. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10643. Acesso em: 12 nov. 2024.

Issue

Section

Agrarian and Biological Sciences