O cocultivo de fungos da podridão branca aumenta a atividade da lacase e sua capacidade de descoloração de corantes

Autores

DOI:

https://doi.org/10.33448/rsd-v9i11.10643

Palavras-chave:

Basidiomycota; Cocultivo; Corantes têxteis; Descoloração; Lacase.

Resumo

Coculturas fúngicas podem promover interações complexas que resultam em alterações fisiológicas e bioquímicas que favorecem a ação sinérgica e mais eficiente de enzimas extracelulares, como a lacase. A cocultura pode ser uma estratégia para aumentar a atividade enzimática, degradação de corantes e biorremediação de efluentes têxteis. Este estudo teve como objetivo avaliar o efeito do cocultivo de Lentinus crinitus, Pleurotus ostreatus, Pycnoporus sanguineus e Trametes polyzona sobre a atividade da lacase, produção de biomassa micelial e descoloração in vitro de corantes azo, antraquinona e trifenilmetano. As espécies foram cultivadas em meio líquido em monocultivo e cocultivo em combinações pareadas por 15 dias para determinar a atividade da lacase e produzir biomassa micelial. Os extratos enzimáticos foram utilizados em testes de descoloração do azul reativo 220 (RB220), do verde malaquita (MG) e do remazol azul brilhante R (RBBR). Os cocultivos Pleurotus-Trametes, Lentinus-Pleurotus e Lentinus-Trametes aumentaram a atividade da lacase em comparação com as respectivas monoculturas. Lentinus-Pycnoporus, Lentinus-Trametes, Lentinus-Pleurotus e Pleurotus-Trametes estimulam a produção de micélio. Os extratos enzimáticos promoveram a descoloração de todos os corantes. O corante RB220, em 24 h, foi descolorido por todos os extratos e o maior percentual de redução da cor foi de 90% para Pleurotus-Trametes. Pleurotus-Trametes aumentou a descoloração do MG e RBBR em 48 he 72 h. Entretanto, o RBBR apresentou a maior resistência à descoloração.

Referências

Bader, J., Mast-Gerlach, E., Popović, M., Bajpai, R., & Stahl, U. (2009). Relevance of microbial coculture fermentations in biotechnology. Journal of Applied Microbiology, 109 (2), 371–387.

Boddy, L. (2000). Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiology Ecology, 31 (3), 185–194.

Cardoso, B. K., Linde, G. A., Colauto, N. B. & Valle, J. S. (2018). Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatalysis and Agricultural Biotechnology, 16, 558–563.

Chan-Cupul, W., Heredia-Abarca, G. & Rodríguez-Vázquez, R. (2016). Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. Journal of Environmental Science and Health, Part B, 51 (5), 298–308.

Chander, M., Arora, D. S. & Bath, H. K. (2004). Biodecolourisation of some industrial dyes by white-rot fungi. Journal of Industrial Microbiology & Biotechnology, 31 (2), 94–97.

Chi, Y., Hatakka. A. & Maijala, P. (2007). Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? International Biodeterioration & Biodegradation, 59 (1), 32–39.

Dwivedi, P., Vivekanand, V., Pareek, N., Sharma, A. & Singh, R. P. (2011). Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. New Biotechnology, 28 (6), 616–626.

Eichlerová, I., Homolka, L., Benada, O., Kofroňová, O., Hubálek, T. & Nerud, F. (2007). Decolorization of Orange G and Remazol Brilliant Blue R by the white rot fungus Dichomitus squalens: Toxicological evaluation and morphological study. Chemosphere, 69 (5), 795–802.

Fernández-Fueyo, E., Ruiz-Dueñas, F.J., Martínez, M., Romero, A., Hammel, K. E., Medrano, F. & Martínez, A. T. (2014). Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnology for Biofuels. 7, 2.

Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S. & Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67 (3), 369–385.

Hiscox, J., Baldrian, P., Rogers, H. J. & Boddy, L. (2010). Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genetics and Biology, 47 (6), 562–571.

Husain, M. & Husain, Q. (2008). Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: A Review. Critical Reviews in Environmental Science and Technology, 38 (1), 1–42.

Krishnamoorthy, R., Jose, P. A., Ranjith, M., Anandham, R., Suganya, K., Prabhakaran, J., Thiyageshwari, S., Johnson, J., Gopal, N. & Kumutha, K. (2018). Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3. Journal of Environmental Chemical Engineering, 6 (1), 588–595.

Kumar, V., Singh, D., Sangwan, P. & Gill, P. K. (2014). Global market scenario of industrial enzymes, in: Benival, V. & Sharma, K.A. (Eds.), Industrial Enzymes: Trends, Scope and Relevance. New York: E-Publishing Inc.

Kumari, S. & Naraian, R. (2016). Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology. Journal of Environmental Management, 180, 172–179.

Luo, F., Zhong, Z., Liu, L., Igarashi, Y., Xie, D. & Li, N. (2017). Metabolomic differential analysis of interspecific interactions among white rot fungi Trametes versicolor, Dichomitus squalens and Pleurotus ostreatus. Scientific Reports, 7, 5265.

Magalhães, D. B., Carvalho, M. E. A. D., Bon, E., Neto, J. S. A. & Kling, S. H. (1996). Colorimetric assay for lignin peroxidase activity determination using methylene blue as substrate. Biotechnology Techniques, 10, 273–276.

Mali, T., Kuuskeri, J., Shah, F. & Lundell, T. K. (2017). Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes. Plos One, 12 (9), e0185171.

Marim, R. A., Avelino, K. V., Linde, G. A., Colauto, N. B. & Valle, J.S. (2018). Lentinus crinitus strains respond differently to cultivation pH and temperature. Genetics and Molecular Research, 17 (1), gmr16039885.

Martínková, L., Kotik, M., Marková, E. & Homolka, L. (2016). Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. Chemosphere, 149, 373–382.

Moreira-Neto, S., Mussatto, S., Machado, K. & Milagres, A. (2013). Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Letters in Applied Microbiology, 56 (4), 283–290.

Pereira, A. S., Shitsuka, D. M., Parreira, F. B., & Shitsuka, R. (2018). Metodologia da pesquisa científica [recurso eletrônico[eBook]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computa cao_MetodologiaPesquisa-Cientifica.pdf?sequence=1.

Przystaś, W., Zabłocka-Godlewska, E. & Grabińska-Sota, E. (2013). Effectiveness of dyes removal by mixed fungal cultures and toxicity of their metabolites. Water, Air, & Soil Pollution, 224, 1534.

Rivera-Hoyos, C. M., Morales-Álvarez, E. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., Rodríguez-Vázquez, R. & Delgado-Boada, J. M. (2013). Fungal laccases. Fungal Biology Reviews, 27 (3-4), 67–82.

Santana, T. T., Linde, G. A., Colauto, N. B. & Valle, J. S. (2018). Metallic-aromatic compounds synergistically induce Lentinus crinitus laccase production. Biocatalysis and Agricultural Biotechnology, 16, 625–630.

Score, A. J., Palfreyman, J. W. & White, N. A. (1997). Extracellular phenoloxidase and peroxidase enzyme production during interspecific fungal interactions. International Biodeterioration & Biodegradation, 39 (2-3), 225–233.

Sen, S. K., Raut, S., Bandyopadhyay, P. & Raut, S. (2016). Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 30 (3), 112–133.

Sharma, A., Jain, K. K., Jain, A., Kidwai, M. & Kuhad, R. C. (2018). Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Applied Microbiology and Biotechnology, 102 (24), 10327–10343.

Valle, J. S., Vandenberghe, L. P. S., Santana, T. T., Linde, G. A., Colauto, N. B. & Soccol, C. R. (2014). Optimization of Agaricus blazei laccase production by submerged cultivation with sugarcane molasses. African Journal of Microbiology Research, 8 (9), 939–946.

Verma, P. & Madamwar, D. (2002). Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Applied Biochemistry and Biotechnology, 102, 109–118.

Vikrant, K., Giri, B.S ., Raza, N., Roy, K., Kim, K-H., Rai, B. N. & Singh, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367.

Wariish, H., Valli, K. & Gold, M. H. (1992). Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. Journal of Biological Chemistry, 267 (33), 23688-23695.

Wesenberg, D. Kyriakides, I. & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22 (1-2), 161–187.

Yang, W., Guo, F. & Wan, Z. (2013). Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi Journal of Biological Sciences, 20 (4), 333–338.

Zhang, H., Hong, Y. Z., Xiao, Y. Z., Yuan, J., Tu, X. M. & Zhang, X. Q. (2006). Efficient production of laccases by Trametes sp. AH28-2 in cocultivation with a Trichoderma strain. Applied Microbiology and Biotechnology, 73, 89–94.

Downloads

Publicado

06/12/2020

Como Citar

AVELINO, K. V.; HALABURA, M. I. W.; MARIM, R. A.; ARAÚJO, N. L.; NUNES, M. G. I. F.; SILVA, D. L. G.; COLAUTO, G. A. L.; COLAUTO, N. B.; VALLE, J. S. do. O cocultivo de fungos da podridão branca aumenta a atividade da lacase e sua capacidade de descoloração de corantes. Research, Society and Development, [S. l.], v. 9, n. 11, p. e88191110643, 2020. DOI: 10.33448/rsd-v9i11.10643. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10643. Acesso em: 2 set. 2024.

Edição

Seção

Ciências Agrárias e Biológicas