Antioxidant activity, inhibition of angiotensin I converting enzyme (ACE) and antibacterial activity of buffalo caseinate protein hydrolysates and their fractions

Authors

DOI:

https://doi.org/10.33448/rsd-v9i12.10772

Keywords:

Ultrafiltration; Buffalo milk; Functional food.

Abstract

In the present study, buffalo milk caseinate hydrolysates produced by bromelain, neutrase, papain and trypsin were ultra-filtered and different fractions were assessed for antioxidant, inhibition of angiotensin converting enzyme and antimicrobial activity. Biological potential was assessed by a number of metrics: ability to remove radicals of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyls; copper and iron chelation; antidiabetic properties; antihypertensive assay; and antibacterial activity against Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19114, Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 25923 strains. The tests for scavenging of hydroxyl radicals and DPPH revealed a greater potential in the 3–10 kDa fractions. Iron chelation activity >70% was observed in all the fractions, including <3 kDa. Copper chelation was >60% in fractions >10 kDa. α-Amylase inhibition and antihypertensive activity was optimal in the <3 kDa fraction. Antibacterial activity ranged between 3.28 and 100% inhibition against microorganisms tested, the fraction <3 kDa showed a greater inhibitory potential.  The antihypertensive activity of fractions ranged between 39.35 and 89.58%. All treatments were able to produce hydrolysates and fractions with biological potential and, so the ultrafiltration method proved to be effective in the separation of peptides with different molar masses and potential use in the food or pharmaceutical industry.

References

Abd El-Salam, M. H., & El-Shibiny, S. (2017). Preparation, properties, and uses of enzymatic milk protein hydrolysates. Critical Reviews in Food Science and Nutrition, 57(6), 1119-1132. https://doi.org/10.1080/10408398.2014.899200

Abdel-Hamid, M., Goda, H. A., De Gobba, C., Jenssen, H., & Osman, A. (2016). Antibacterial activity of papain hydrolysed camel whey and its fractions. International Dairy Journal, 61, 91–98. https://doi.org/10.1016/j.idairyj.2016.04.004

Abdel-Hamid, M., Otte, J., De Gobba, C., Osman, A., & Hamad, E. (2017). Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. International Dairy Journal, 66, 91–98. https://doi.org/10.1016/j.idairyj.2016.11.006

Ali, H., Houghton, P. J., & Soumyanath, A. (2006). α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology, 107(3), 449–455. https://doi.org/10.1016/j.jep.2006.04.004

Amigo, L., & Hernández-Ledesma, B. (2020). Current evidence on the bioavailability of food bioactive peptides. Molecules, 25(19), 4479. https://doi.org/10.3390/molecules25194479

Andrés, V., Villanueva, M. J., & Tenorio, M. D. (2016). The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chemistry, 192, 328–335. https://doi.org/10.1016/j.foodchem.2015.07.031

Bamdad, F., Bark, S., Kwon, C. H., Suh, J. W., & Sunwoo, H. (2017). Anti-inflammatory and antioxidant properties of peptides released from β-lactoglobulin by high hydrostatic pressure-assisted enzymatic hydrolysis. Molecules, 22(6), 949. https://doi.org/10.3390/molecules22060949

Chaudhari, D. D., Singh, R., Mallappa, R. H., Rokana, N., Kaushik, J. K., Bajaj, R., Batish, V. K., & Grover, S. (2017). Evaluation of casein & whey protein hydrolysates as well as milk fermentates from Lactobacillus helveticus for expression of gut hormones. The Indian Journal of Medical Research, 146(3), 409–419. https://doi.org/10.4103/ijmr.IJMR_802_15

Cumby, N., Zhong, Y., Naczk, M., & Shahidi, F. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, 109(1), 144–148. https://doi.org/10.1016/j.foodchem.2007.12.039

Demers-Mathieu, V., Gauthier, S. F., Britten, M., Fliss, I., Robitaille, G., & Jean, J. (2013). Antibacterial activity of peptides extracted from tryptic hydrolysate of whey protein by nanofiltration. International Dairy Journal, 28(2), 94–101. https://doi.org/10.1016/j.idairyj.2012.09.003

Dong, X. H., Li, J., Jiang, G. X., Li, H. Y., Zhao, M. M., & Jiang, Y. M. (2019). Effects of combined high pressure and enzymatic treatments on physicochemical and antioxidant properties of peanut proteins. Food Science & Nutrition, 7(4), 1417-1425. https://doi.org/10.1002/fsn3.976

Duan, X. J., Zhang, W. W., Li, X. M., & Wang, B. G. (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95(1), 37–43. https://doi.org/10.1016/j.foodchem.2004.12.015

Egito, A. S., Girardet, J. M., Laguna, L. E., Poirson, C., Mollé, D., Miclo, L., … Gaillard, J. L. (2007). Milk-clotting activity of enzyme extracts from sunflower and albizia seeds and specific hydrolysis of bovine κ-casein. International Dairy Journal, 17(7), 816–825. https://doi.org/10.1016/j.idairyj.2006.09.012

Espejo-Carpio, F. J., De Gobba, C., Guadix, A., Guadix, E. M., & Otte, J. (2013). Angiotensin I-converting enzyme inhibitory activity of enzymatic hydrolysates of goat milk protein fractions. International Dairy Journal, 32(2), 175–183. https://doi.org/10.1016/j.idairyj.2013.04.002

Fangmeier, M., Kemerich, G. T., Machado, B. L., Maciel, M. J., Souza, C. F. V. D. (2019). Effects of cow, goat, and buffalo milk on the characteristics of cream cheese with whey retention. Food Science and Technology, 39, 122-128. https://doi.org/10.1590/fst.39317

Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug Discovery Today, 20(1), 122–128. ttps://doi.org/10.1016/j.drudis.2014.10.003

Gaudel, C., Nongonierma, A. B., Maher, S., Flynn, S., Krause, M., Murray, B. A., … Newsholme, P. (2013). A Whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic -cell line and enhances glycemic function in ob/ob mice. Journal of Nutrition, 143(7), 1109–1114. https://doi.org/10.3945/jn.113.174912

Glinel, K., Thebault, P., Humblot, V., Pradier, C. M., & Jouenne, T. (2012). Antibacterial surfaces developed from bio-inspired approaches. Acta Biomaterialia, 8(5), 1670–1684. https://doi.org/10.1016/j.actbio.2012.01.011

Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651-715. https://doi.org/10.1007/s00204-020-02689-3

Hernández-Ledesma, B., Quirós, A., Amigo, L., & Recio, I. (2007). Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal, 17(1), 42–49. https://doi.org/10.1016/j.idairyj.2005.12.012

Hu, G., Zheng, Y., Liu, Z., Xiao, Y., Deng, Y., & Zhao, Y. (2017). Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chemistry, 221, 1860–1866. https://doi.org/10.1016/j.foodchem.2016.10.088

Ingham, B., Smialowska, A., Kirby, N. M., Wang, C., & Carr, A. J. (2018). A structural comparison of casein micelles in cow, goat and sheep milk using X-ray scattering. Soft Matter, 14(17), 3336-3343. https://doi.org/10.1039/C8SM00458G

Iskandar, M., Lands, L., Sabally, K., Azadi, B., Meehan, B., Mawji, N., … Kubow, S. (2015). High hydrostatic pressure pretreatment of whey protein isolates improves their digestibility and antioxidant capacity. Foods, 4(2), 184–207. https://doi.org/10.3390/foods4020184

Islam, M. A., Alam, M. K., Islam, M. N., Khan, M. A. S., Ekeberg, D., Rukke, E. O., & Vegarud, G. E. (2014). Principal milk components in buffalo, holstein cross, indigenous cattle and red chittagong cattle from Bangladesh. Asian-Australasian Journal of Animal Sciences, 27(6), 886–897. https://doi.org/10.5713/ajas.2013.13586

Jan, F., Kumar, S., & Jha, R. (2016). Effect of boiling on the antidiabetic property of enzyme treated sheep milk casein. Veterinary World, 9(10), 1152–1156. https://doi.org/10.14202/vetworld.2016.1152-1156

Kamal, H., Jafar, S., Mudgil, P., Murali, C., Amin, A., & Maqsood, S. (2018). Inhibitory properties of camel whey protein hydrolysates toward liver cancer cells, dipeptidyl peptidase-IV, and inflammation. Journal of Dairy Science, 101(10), 8711-8720. https://doi.org/10.3168/jds.2018-14586

Kim, Y. M., Wang, M. H., & Rhee, H. I. (2004). A novel α-glucosidase inhibitor from pine bark. Carbohydrate Research, 339(3), 715–717. https://doi.org/10.1016/j.carres.2003.11.005

Konrad, B., Anna, D., Marek, S., Marta, P., Aleksandra, Z., & Józefa, C. (2014). The evaluation of dipeptidyl peptidase (DPP)-IV, α-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolysed with serine protease isolated from asian pumpkin (Cucurbita ficifolia). International Journal of Peptide Research and Therapeutics, 20(4), 483–491. https://doi.org/10.1007/s10989-014-9413-0

Kumar, D., Chatli, M. K., Singh, R., Mehta, N., & Kumar, P. (2016). Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Ruminant Research, 139, 20–25. https://doi.org/10.1016/j.smallrumres.2016.05.002

Kurutas, E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal, 15(71), 1-22. https://doi.org/10.1186/s12937-016-0186-5

Liu, Z., Chen, X., Li, Z., Ye, W., Ding, H., Li, P., & Aung, L. H. H. (2020). Role of RNA oxidation in neurodegenerative diseases. International Journal of Molecular Sciences, 21(14), 5022. https://doi.org/10.3390/ijms21145022

Luo, Y., Pan, K., & Zhong, Q. (2014). Physical, chemical and biochemical properties of casein hydrolysed by three proteases: Partial characterizations. Food Chemistry, 155, 146–154. https://doi.org/10.1016/j.foodchem.2014.01.048

Megías, C., Pedroche, J., Yust, M. M., Julio Girón-Calle, M. A., Millán, F., & Vioque, J. (2007). Affinity purification of copper chelating peptides from chickpea protein hydrolysates. Journal of Agricultural and Food Chemistry, 55(10), 3949–3954. https://doi.org/10.1021/jf063401s

Muguerza, B., Ramos, M., Sánchez, E., Manso, M. A., Miguel, M., Aleixandre, A., … Recio, I. (2006). Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk. International Dairy Journal, 16(1), 61–69. https://doi.org/10.1016/j.idairyj.2005.01.001

Nielsen, S. D., Beverly, R. L., Qu, Y., & Dallas, D. C. (2017). Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chemistry, 232, 673–682. https://doi.org/10.1016/j.foodchem.2017.04.056

Osman, A., Goda, H. A., Abdel-Hamid, M., Badran, S. M., & Otte, J. (2016). Antibacterial peptides generated by Alcalase hydrolysis of goat whey. LWT - Food Science and Technology, 65, 480–486. https://doi.org/10.1016/j.lwt.2015.08.043

Petsantad, P., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Reamtong, O., Chaitanawisuti, N., & Karnchanatat, A. (2020). The antioxidant potential of peptides obtained from the spotted babylon snail (Babylonia areolata) in treating human colon adenocarcinoma (Caco-2) cells. RSC Advances, 10(43), 25746-25757. https://doi.org/10.1039/D0RA03261A

Pietrzak-Fiećko, R., & Kamelska-Sadowska, A. M. (2020). The comparison of nutritional value of human milk with other mammals’ milk. Nutrients, 12(5), 1404. https://doi.org/10.3390/nu12051404

Rabiei, S., Rezaei, M., Asgharzade, S., Nikoo, M., & Rafieia-kopai, M. (2019). Antioxidant and cytotoxic properties of protein hydrolysates obtained from enzymatic hydrolysis of Klunzinger’s mullet (Liza klunzingeri) muscle. Brazilian Journal of Pharmaceutical Sciences, 55. https://doi.org/10.1590/s2175-97902019000218304

Rivero-Pino, F., Espejo-Carpio, F. J., & Guadix, E. M. (2020). Antidiabetic food-derived peptides for functional feeding: Production, functionality and in vivo evidences. Foods, 9(8), 983. https://doi.org/10.3390/foods9080983

Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51(12), 3661–3667. https://doi.org/10.1021/jf021156g

Salami, M., Moosavi-Movahedi, A. A., Ehsani, M. R., Yousefi, R., Haertlé, T., Chobert, J. M., … Niasari-Naslaji, A. (2010). Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry, 58(6), 3297–3302. https://doi.org/10.1021/jf9033283

Sánchez-vioque, R., Polissiou, M., Astraka, K., & Mozos-Pascual, M. D. L. (2013). Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Food Chemistry, 49(141), 150–159. https://doi.org/10.1016/j.indcrop.2013.04.053

Sánchez-Vioque, R., Rodríguez-Conde, M. F., Reina-Ureña, J. V., Escolano-Tercero, M. A., Herraiz-Peñalver, D., & Santana-Méridas, O. (2012). In vitro antioxidant and metal chelating properties of corm, tepal and leaf from saffron (Crocus sativus L.). Industrial Crops and Products, 39(1), 149–153. https://doi.org/10.1016/j.indcrop.2012.02.028

Sawicka, B., Ziarati, P., Krochmal-Marczak, B. A. R. B. A. R. A., Skiba, D. (2020). Nutraceuticals in food and pharmacy. A Review. Annales UMCS Sectio e Agricultura, 74(4), 7-30. http://dx.doi.org/10.24326/as.2019.4.2

Shanmugam, V. P., Kapila, S., Sonfack, T. K., & Kapila, R. (2015). Antioxidative peptide derived from enzymatic digestion of buffalo casein. International Dairy Journal, 42, 1–5. https://doi.org/10.1016/j.idairyj.2014.11.001

Shazly, A. B., He, Z., El-Aziz, M. A., Zeng, M., Zhang, S., Qin, F., & Chen, J. (2017). Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chemistry, 232, 753–762. https://doi.org/10.1016/j.foodchem.2017.04.071

Shazly, A. B., Mu, H., Liu, Z., Abd El-Aziz, M., Zeng, M., Qin, F., ...; Chen, J. (2019). Release of antioxidant peptides from buffalo and bovine caseins: Influence of proteases on antioxidant capacities. Food Chemistry, 274, 261-267. https://doi.org/10.1016/j.foodchem.2018.08.137

Sujarwanta, R.O. et al. (2018). Increased inhibition of angiotensin converting enzyme (ACE) obtained from Indonesian buffalo meat protein using SEP-PAK Plus C18. Pakistan Journal of Nutrition, 17(9): 434 -440. https://doi.org/10.3923/pjn.2018.434.440

Tadesse, S. A., & Emire, S. A. (2020). Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon, 6(8), e04765. https://doi.org/10.1016/j.heliyon.2020.e04765

Trommelen, J., Weijzen, M. E., van Kranenburg, J., Ganzevles, R. A., Beelen, M., Verdijk, L. B., & van Loon, L. J. (2020). Casein protein processing strongly modulates post-prandial plasma amino acid responses in vivo in humans. Nutrients, 12(8), 2299.

https://doi.org/ 10.3390/nu12082299

Wang, P. et al. (2020). Preparation of antioxidant peptides from hairtail surimi using hydrolysis and evaluation of its antioxidant stability. Food Science and Technology, 40(4), 945-955. https://doi.org/10.1590/fst.23719

Wu, S., Qi, W., Li, T., Lu, D., Su, R., & He, Z. (2013). Simultaneous production of multi-functional peptides by pancreatic hydrolysis of bovine casein in an enzymatic membrane reactor via combinational chromatography. Food Chemistry, 141(3), 2944–2951. https://doi.org/10.1016/j.foodchem.2013.05.050

Zarei, M., Ebrahimpour, A., Abdul-Hamid, A., Anwar, F., Bakar, F. A., Philip, R., & Saari, N. (2014). Identification and characterization of papain-generated antioxidant peptides from palm kernel cake proteins. Food Research International, 62, 726–734. https://doi.org/10.1016/j.foodres.2014.04.041

Zhang, C., Cao, W., Hong, P., Ji, H., Qin, X., & He, J. (2009). Angiotensin I-converting enzyme inhibitory activity of Acetes chinensis peptic hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. International Journal of Food Science and Technology, 44(10), 2042–2048. https://doi.org/10.1111/j.1365-2621.2009.02028.x

Zhao, Q., Shi, Y., Wang, X., & Huang, A. (2020). Characterization of a novel antimicrobial peptide from buffalo casein hydrolysate based on live bacteria adsorption. Journal of Dairy Science, 103(12). https://doi.org/10.3168/jds.2020-18577

Downloads

Published

24/12/2020

How to Cite

SANTOS, W. L. dos .; SILVA, T. A. da; NASCIMENTO, P. L. A. do .; FALCÃO, R. E. A. .; OLIVEIRA, J. T. C. .; MOREIRA, K. A. . Antioxidant activity, inhibition of angiotensin I converting enzyme (ACE) and antibacterial activity of buffalo caseinate protein hydrolysates and their fractions. Research, Society and Development, [S. l.], v. 9, n. 12, p. e27591210772, 2020. DOI: 10.33448/rsd-v9i12.10772. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10772. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences