Atividade antioxidante, inibição da enzima conversora de angiotensina I (ECA) e atividade antibacteriana de hidrolisados proteicos de caseinato de búfalo e suas frações
DOI:
https://doi.org/10.33448/rsd-v9i12.10772Palavras-chave:
Ultrafiltração; Leite de búfalo; Alimentos funcionais.Resumo
No presente estudo, os hidrolisados do caseinato de leite de búfala produzidos por bromelina, neutrase, papaína e tripsina foram ultrafiltrados, e diferentes frações foram avaliadas quanto à atividade antioxidante, inibição da enzima conversora de angiotensina I e antimicrobiana. O potencial biológico foi avaliado através de uma série de atividades: capacidade de remover radicais de 2,2'-azino-bis (ácido 3-etilbenztiazolina-6-sulfônico), 2,2'-difenil-1-picrylhydrazyl (DPPH) e hidroxilas; quelação de cobre e ferro; propriedades antidiabéticas; inibição da enzima conversora de angiotensina; e atividade antibacteriana contra Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19114, Salmonella typhimurium ATCC 14028 e cepas de Staphylococcus aureus ATCC 25923. Os testes para sequestro dos radicais hidroxila e DPPH revelaram um maior potencial nas frações de 3-10 kDa. A atividade de quelação do ferro >70% foi observada em todas as frações, incluindo <3 kDa. A quelação do cobre foi >60% nas frações >10 kDa. A inibição da α-amilase e atividade anti-hipertensiva foi ótima na fração <3 kDa. A atividade antibacteriana variou entre 3,28 e 100% de inibição contra os microrganismos testados. A fração <3 kDa mostrou um potencial inibitório maior. A atividade anti-hipertensiva das frações variou entre 39,35 e 89,58%. Todos os tratamentos foram capazes de produzir hidrolisados e frações com potencial biológico e, portanto, o método de ultrafiltração prova ser eficaz na separação de peptídeos com diferentes massas molares e uso potencial na indústria alimentícia ou farmacêutica.
Referências
Abd El-Salam, M. H., & El-Shibiny, S. (2017). Preparation, properties, and uses of enzymatic milk protein hydrolysates. Critical Reviews in Food Science and Nutrition, 57(6), 1119-1132. https://doi.org/10.1080/10408398.2014.899200
Abdel-Hamid, M., Goda, H. A., De Gobba, C., Jenssen, H., & Osman, A. (2016). Antibacterial activity of papain hydrolysed camel whey and its fractions. International Dairy Journal, 61, 91–98. https://doi.org/10.1016/j.idairyj.2016.04.004
Abdel-Hamid, M., Otte, J., De Gobba, C., Osman, A., & Hamad, E. (2017). Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. International Dairy Journal, 66, 91–98. https://doi.org/10.1016/j.idairyj.2016.11.006
Ali, H., Houghton, P. J., & Soumyanath, A. (2006). α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology, 107(3), 449–455. https://doi.org/10.1016/j.jep.2006.04.004
Amigo, L., & Hernández-Ledesma, B. (2020). Current evidence on the bioavailability of food bioactive peptides. Molecules, 25(19), 4479. https://doi.org/10.3390/molecules25194479
Andrés, V., Villanueva, M. J., & Tenorio, M. D. (2016). The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chemistry, 192, 328–335. https://doi.org/10.1016/j.foodchem.2015.07.031
Bamdad, F., Bark, S., Kwon, C. H., Suh, J. W., & Sunwoo, H. (2017). Anti-inflammatory and antioxidant properties of peptides released from β-lactoglobulin by high hydrostatic pressure-assisted enzymatic hydrolysis. Molecules, 22(6), 949. https://doi.org/10.3390/molecules22060949
Chaudhari, D. D., Singh, R., Mallappa, R. H., Rokana, N., Kaushik, J. K., Bajaj, R., Batish, V. K., & Grover, S. (2017). Evaluation of casein & whey protein hydrolysates as well as milk fermentates from Lactobacillus helveticus for expression of gut hormones. The Indian Journal of Medical Research, 146(3), 409–419. https://doi.org/10.4103/ijmr.IJMR_802_15
Cumby, N., Zhong, Y., Naczk, M., & Shahidi, F. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, 109(1), 144–148. https://doi.org/10.1016/j.foodchem.2007.12.039
Demers-Mathieu, V., Gauthier, S. F., Britten, M., Fliss, I., Robitaille, G., & Jean, J. (2013). Antibacterial activity of peptides extracted from tryptic hydrolysate of whey protein by nanofiltration. International Dairy Journal, 28(2), 94–101. https://doi.org/10.1016/j.idairyj.2012.09.003
Dong, X. H., Li, J., Jiang, G. X., Li, H. Y., Zhao, M. M., & Jiang, Y. M. (2019). Effects of combined high pressure and enzymatic treatments on physicochemical and antioxidant properties of peanut proteins. Food Science & Nutrition, 7(4), 1417-1425. https://doi.org/10.1002/fsn3.976
Duan, X. J., Zhang, W. W., Li, X. M., & Wang, B. G. (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95(1), 37–43. https://doi.org/10.1016/j.foodchem.2004.12.015
Egito, A. S., Girardet, J. M., Laguna, L. E., Poirson, C., Mollé, D., Miclo, L., … Gaillard, J. L. (2007). Milk-clotting activity of enzyme extracts from sunflower and albizia seeds and specific hydrolysis of bovine κ-casein. International Dairy Journal, 17(7), 816–825. https://doi.org/10.1016/j.idairyj.2006.09.012
Espejo-Carpio, F. J., De Gobba, C., Guadix, A., Guadix, E. M., & Otte, J. (2013). Angiotensin I-converting enzyme inhibitory activity of enzymatic hydrolysates of goat milk protein fractions. International Dairy Journal, 32(2), 175–183. https://doi.org/10.1016/j.idairyj.2013.04.002
Fangmeier, M., Kemerich, G. T., Machado, B. L., Maciel, M. J., Souza, C. F. V. D. (2019). Effects of cow, goat, and buffalo milk on the characteristics of cream cheese with whey retention. Food Science and Technology, 39, 122-128. https://doi.org/10.1590/fst.39317
Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug Discovery Today, 20(1), 122–128. ttps://doi.org/10.1016/j.drudis.2014.10.003
Gaudel, C., Nongonierma, A. B., Maher, S., Flynn, S., Krause, M., Murray, B. A., … Newsholme, P. (2013). A Whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic -cell line and enhances glycemic function in ob/ob mice. Journal of Nutrition, 143(7), 1109–1114. https://doi.org/10.3945/jn.113.174912
Glinel, K., Thebault, P., Humblot, V., Pradier, C. M., & Jouenne, T. (2012). Antibacterial surfaces developed from bio-inspired approaches. Acta Biomaterialia, 8(5), 1670–1684. https://doi.org/10.1016/j.actbio.2012.01.011
Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651-715. https://doi.org/10.1007/s00204-020-02689-3
Hernández-Ledesma, B., Quirós, A., Amigo, L., & Recio, I. (2007). Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal, 17(1), 42–49. https://doi.org/10.1016/j.idairyj.2005.12.012
Hu, G., Zheng, Y., Liu, Z., Xiao, Y., Deng, Y., & Zhao, Y. (2017). Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chemistry, 221, 1860–1866. https://doi.org/10.1016/j.foodchem.2016.10.088
Ingham, B., Smialowska, A., Kirby, N. M., Wang, C., & Carr, A. J. (2018). A structural comparison of casein micelles in cow, goat and sheep milk using X-ray scattering. Soft Matter, 14(17), 3336-3343. https://doi.org/10.1039/C8SM00458G
Iskandar, M., Lands, L., Sabally, K., Azadi, B., Meehan, B., Mawji, N., … Kubow, S. (2015). High hydrostatic pressure pretreatment of whey protein isolates improves their digestibility and antioxidant capacity. Foods, 4(2), 184–207. https://doi.org/10.3390/foods4020184
Islam, M. A., Alam, M. K., Islam, M. N., Khan, M. A. S., Ekeberg, D., Rukke, E. O., & Vegarud, G. E. (2014). Principal milk components in buffalo, holstein cross, indigenous cattle and red chittagong cattle from Bangladesh. Asian-Australasian Journal of Animal Sciences, 27(6), 886–897. https://doi.org/10.5713/ajas.2013.13586
Jan, F., Kumar, S., & Jha, R. (2016). Effect of boiling on the antidiabetic property of enzyme treated sheep milk casein. Veterinary World, 9(10), 1152–1156. https://doi.org/10.14202/vetworld.2016.1152-1156
Kamal, H., Jafar, S., Mudgil, P., Murali, C., Amin, A., & Maqsood, S. (2018). Inhibitory properties of camel whey protein hydrolysates toward liver cancer cells, dipeptidyl peptidase-IV, and inflammation. Journal of Dairy Science, 101(10), 8711-8720. https://doi.org/10.3168/jds.2018-14586
Kim, Y. M., Wang, M. H., & Rhee, H. I. (2004). A novel α-glucosidase inhibitor from pine bark. Carbohydrate Research, 339(3), 715–717. https://doi.org/10.1016/j.carres.2003.11.005
Konrad, B., Anna, D., Marek, S., Marta, P., Aleksandra, Z., & Józefa, C. (2014). The evaluation of dipeptidyl peptidase (DPP)-IV, α-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolysed with serine protease isolated from asian pumpkin (Cucurbita ficifolia). International Journal of Peptide Research and Therapeutics, 20(4), 483–491. https://doi.org/10.1007/s10989-014-9413-0
Kumar, D., Chatli, M. K., Singh, R., Mehta, N., & Kumar, P. (2016). Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Ruminant Research, 139, 20–25. https://doi.org/10.1016/j.smallrumres.2016.05.002
Kurutas, E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal, 15(71), 1-22. https://doi.org/10.1186/s12937-016-0186-5
Liu, Z., Chen, X., Li, Z., Ye, W., Ding, H., Li, P., & Aung, L. H. H. (2020). Role of RNA oxidation in neurodegenerative diseases. International Journal of Molecular Sciences, 21(14), 5022. https://doi.org/10.3390/ijms21145022
Luo, Y., Pan, K., & Zhong, Q. (2014). Physical, chemical and biochemical properties of casein hydrolysed by three proteases: Partial characterizations. Food Chemistry, 155, 146–154. https://doi.org/10.1016/j.foodchem.2014.01.048
Megías, C., Pedroche, J., Yust, M. M., Julio Girón-Calle, M. A., Millán, F., & Vioque, J. (2007). Affinity purification of copper chelating peptides from chickpea protein hydrolysates. Journal of Agricultural and Food Chemistry, 55(10), 3949–3954. https://doi.org/10.1021/jf063401s
Muguerza, B., Ramos, M., Sánchez, E., Manso, M. A., Miguel, M., Aleixandre, A., … Recio, I. (2006). Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk. International Dairy Journal, 16(1), 61–69. https://doi.org/10.1016/j.idairyj.2005.01.001
Nielsen, S. D., Beverly, R. L., Qu, Y., & Dallas, D. C. (2017). Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chemistry, 232, 673–682. https://doi.org/10.1016/j.foodchem.2017.04.056
Osman, A., Goda, H. A., Abdel-Hamid, M., Badran, S. M., & Otte, J. (2016). Antibacterial peptides generated by Alcalase hydrolysis of goat whey. LWT - Food Science and Technology, 65, 480–486. https://doi.org/10.1016/j.lwt.2015.08.043
Petsantad, P., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Reamtong, O., Chaitanawisuti, N., & Karnchanatat, A. (2020). The antioxidant potential of peptides obtained from the spotted babylon snail (Babylonia areolata) in treating human colon adenocarcinoma (Caco-2) cells. RSC Advances, 10(43), 25746-25757. https://doi.org/10.1039/D0RA03261A
Pietrzak-Fiećko, R., & Kamelska-Sadowska, A. M. (2020). The comparison of nutritional value of human milk with other mammals’ milk. Nutrients, 12(5), 1404. https://doi.org/10.3390/nu12051404
Rabiei, S., Rezaei, M., Asgharzade, S., Nikoo, M., & Rafieia-kopai, M. (2019). Antioxidant and cytotoxic properties of protein hydrolysates obtained from enzymatic hydrolysis of Klunzinger’s mullet (Liza klunzingeri) muscle. Brazilian Journal of Pharmaceutical Sciences, 55. https://doi.org/10.1590/s2175-97902019000218304
Rivero-Pino, F., Espejo-Carpio, F. J., & Guadix, E. M. (2020). Antidiabetic food-derived peptides for functional feeding: Production, functionality and in vivo evidences. Foods, 9(8), 983. https://doi.org/10.3390/foods9080983
Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51(12), 3661–3667. https://doi.org/10.1021/jf021156g
Salami, M., Moosavi-Movahedi, A. A., Ehsani, M. R., Yousefi, R., Haertlé, T., Chobert, J. M., … Niasari-Naslaji, A. (2010). Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry, 58(6), 3297–3302. https://doi.org/10.1021/jf9033283
Sánchez-vioque, R., Polissiou, M., Astraka, K., & Mozos-Pascual, M. D. L. (2013). Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Food Chemistry, 49(141), 150–159. https://doi.org/10.1016/j.indcrop.2013.04.053
Sánchez-Vioque, R., Rodríguez-Conde, M. F., Reina-Ureña, J. V., Escolano-Tercero, M. A., Herraiz-Peñalver, D., & Santana-Méridas, O. (2012). In vitro antioxidant and metal chelating properties of corm, tepal and leaf from saffron (Crocus sativus L.). Industrial Crops and Products, 39(1), 149–153. https://doi.org/10.1016/j.indcrop.2012.02.028
Sawicka, B., Ziarati, P., Krochmal-Marczak, B. A. R. B. A. R. A., Skiba, D. (2020). Nutraceuticals in food and pharmacy. A Review. Annales UMCS Sectio e Agricultura, 74(4), 7-30. http://dx.doi.org/10.24326/as.2019.4.2
Shanmugam, V. P., Kapila, S., Sonfack, T. K., & Kapila, R. (2015). Antioxidative peptide derived from enzymatic digestion of buffalo casein. International Dairy Journal, 42, 1–5. https://doi.org/10.1016/j.idairyj.2014.11.001
Shazly, A. B., He, Z., El-Aziz, M. A., Zeng, M., Zhang, S., Qin, F., & Chen, J. (2017). Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chemistry, 232, 753–762. https://doi.org/10.1016/j.foodchem.2017.04.071
Shazly, A. B., Mu, H., Liu, Z., Abd El-Aziz, M., Zeng, M., Qin, F., ...; Chen, J. (2019). Release of antioxidant peptides from buffalo and bovine caseins: Influence of proteases on antioxidant capacities. Food Chemistry, 274, 261-267. https://doi.org/10.1016/j.foodchem.2018.08.137
Sujarwanta, R.O. et al. (2018). Increased inhibition of angiotensin converting enzyme (ACE) obtained from Indonesian buffalo meat protein using SEP-PAK Plus C18. Pakistan Journal of Nutrition, 17(9): 434 -440. https://doi.org/10.3923/pjn.2018.434.440
Tadesse, S. A., & Emire, S. A. (2020). Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon, 6(8), e04765. https://doi.org/10.1016/j.heliyon.2020.e04765
Trommelen, J., Weijzen, M. E., van Kranenburg, J., Ganzevles, R. A., Beelen, M., Verdijk, L. B., & van Loon, L. J. (2020). Casein protein processing strongly modulates post-prandial plasma amino acid responses in vivo in humans. Nutrients, 12(8), 2299.
https://doi.org/ 10.3390/nu12082299
Wang, P. et al. (2020). Preparation of antioxidant peptides from hairtail surimi using hydrolysis and evaluation of its antioxidant stability. Food Science and Technology, 40(4), 945-955. https://doi.org/10.1590/fst.23719
Wu, S., Qi, W., Li, T., Lu, D., Su, R., & He, Z. (2013). Simultaneous production of multi-functional peptides by pancreatic hydrolysis of bovine casein in an enzymatic membrane reactor via combinational chromatography. Food Chemistry, 141(3), 2944–2951. https://doi.org/10.1016/j.foodchem.2013.05.050
Zarei, M., Ebrahimpour, A., Abdul-Hamid, A., Anwar, F., Bakar, F. A., Philip, R., & Saari, N. (2014). Identification and characterization of papain-generated antioxidant peptides from palm kernel cake proteins. Food Research International, 62, 726–734. https://doi.org/10.1016/j.foodres.2014.04.041
Zhang, C., Cao, W., Hong, P., Ji, H., Qin, X., & He, J. (2009). Angiotensin I-converting enzyme inhibitory activity of Acetes chinensis peptic hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. International Journal of Food Science and Technology, 44(10), 2042–2048. https://doi.org/10.1111/j.1365-2621.2009.02028.x
Zhao, Q., Shi, Y., Wang, X., & Huang, A. (2020). Characterization of a novel antimicrobial peptide from buffalo casein hydrolysate based on live bacteria adsorption. Journal of Dairy Science, 103(12). https://doi.org/10.3168/jds.2020-18577
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Wellington Leal dos Santos; Thailan Arlindo da Silva; Patrícia Lins Azevedo do Nascimento; Rosângela Estevão Alves Falcão; João Tiago Correia Oliveira; Keila Aparecida Moreira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.