Rheological behavior and texture of corn starch gels (Zea mays), arrowroot (Maranta arundinaceaea L.) and cassava (Manihote sculenta Crantz)
DOI:
https://doi.org/10.33448/rsd-v9i12.10868Keywords:
Gelatinization; Retrogradation; Fluids; Elasticity.Abstract
The main energy reserve in plants is starch. It is unique among polysaccarides for being in the form of granules. Starch granules are heterogeneous mixtures of amylose and amylopectin. Gelatinization and retrogradation of starch depend on the ratio of amylose to amylopectin, type of crystallinity, along with the sizes and structure of starch granules. The present work determined the rheological behavior in a dynamic state, in terms of sweeping frequency, time and temperature, in addition to the extrusion of corn starch gels and arrowroot and cassava starches. The rheological study demonstrated that in all samples analyzed, whether in a non-gelatinized liquid mixture or in the form of gels, behaved as non-Newtonian fluids independent of time. Non-gelatinized mixtures showed properties of dilating non-Newtonian fluids and the gels of pseudoplastic non-Newtonian fluids. Gels were classified as elastic, as it was found that the storage module is larger than the dissipation module with the storage module decreasing with increasing temperature, and thus temperature dependent. With increased temperature, the gels showed low stability which is characteristic of weak gels. The more elastic the gel, the greater its resistance and the corn starch gel was the most resistant when compared to arrowroot and cassava starch.
References
AACCI METHOD 74-09.01. (2010). Measurement of Bread Firmness by Universal Testing Machine. In: AACC International approved methods of analysis. 11th. ed. [s.l.] AACC International.
Ahmad, F. B. & Willians, P. A. (2001). Effects of galactomannans on the thermal and rheological properties of sago starch. Journal of Agricultural and Food Chemisty, 49(3): 1578-1586.
Alcázar-Alay, S. C. & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35(2): 215-236.
Alfrey T. & Gurnee, E. F. (1956). Dinamics of viscoelatic behavior. cap 11. Rheology- Teory and applications. v.1. New York.
Araújo, B. M. M. (2003). Influência de impurezas na cinética de cristalização de sacarose avaliada através da reologia de solução de sacarose. Dissertação (Mestrado em Engenharia e Ciência de Alimentos). Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto-SP, pp. 90.
Bagley, E. B. & Christianson, D. D. (1982). Swelling capacity of starch and its relationship to suspension viscosity – effect of cooking time, temperature and concentration. Journal of Food Texture, 13:115-126.
Barnes, H. A.; Hutton, J. F. &Walters, K. (1989). An Introduction to Rheology. 3.ed. v.3. Amsterdam: Elsevier Science Publishers, p.37-54. 1989.
Biliaderis, C. G. (1991). The structure and interactions of starch with food. Canadian Journal of Physiology and Pharmacology, 69(1):60-78.
Bobbio, F. O. & Bobbio, P. A. (1995). Introdução à química dos alimentos. 2.ed. São Paulo: Livraria Varela, 1995. 223p.
Coutinho, A. P. C. & Cabello, C. (2005) Caracterização reológica da fécula de mandioca. Revista Raízes e Amidos Tropicais, 1:40-48.
Eliasson, A. C. (1996). Carbohydrates in food. New York: Marcel Dekker, pp 664.
Ferreira, P. P. (2014). Extração, caracterização e aplicação de fécula de açafrão (Curcuma longa l.) no desenvolvimento de biscoito. 2014. 51p. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos). Universidade Federal de Goiás, Goiânia.
Franco, C. M. L. et al. (2001). Propriedades gerais do Amido. Série: Culturas de Tuberosas Amiláceas Latino Americanas, v.1. São Paulo: Fundação Cargill, 221p.
Geise, J. (1995). Developments in beverage additives. Food Technology, 49(9): 64-72.
Giboreau, A.; Cuvelier, G. & Launay, B. (2004). Rheological behaviour of three biopolymer/water systems, with emphasis on yield stress and viscoelastic properties. Journal of Texture Studies, 25:119-137.
Holdsworth, S. D. (1971). Dehydration of food products. A review. Journal of Food Technology, 6:331-370.
Irani, M. et al. (2019). Viscoelastic and textural properties of canary seed starch gels in comparison with wheat starch gel. International Journal of Biological Macromolecules, 124: 270-281.
Karam, L. B. et al. (2006). Thermal, microstructural and textural characterization of gelatinized corn, cassava and yam starch blends. International Journal of Food Science and Technology, 41:805-812.
Kavanagh, G. M. & Ross-Murphy, S. B. (1998). Rheological characterization of polymer gels. Progress in Polymers Science, 23:533-562.
Leonel, M. et al. (2001). Extraction and characterization of biri starch (Canna edulis). Brazilian Journal of Food Technology, 5:27-32.
Lindeboom, N.; Chang, P. R. & Tyler, R. T. (2004). Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch-Starke, 56(3-4):89-99.
Mizukami, H.; Takeda, Y. & Hizukiri, S. (1999). The structure of the hot water soluble components in the starch granules of new Japanese rice cultivars. Carbohydrate Polymers, 4(38):329-335.
Okechukwu, P. E. & Rao, M. A. (1995). Influence of granule size on viscosity of cornstarch suspension. Journal of Texture Studies, 26: 501-516.
Oyeyinka, S. A. & Oyeyinka, A. T. (2017). A review on isolation, composition, physicochemical properties and modification of Bambara groundnut starch. Food Hydrocolloids, 75: 62-71, n. Supplement C.
Pereira, E. A. et al. (2005). Comportamento reológico de suspensões contendo o biopolímero xantana. In: Resumo do 8º Congresso Brasileiro de Polímeros, São Paulo.
Rao, M. A. (2014). Rheology of luid, Semisolid and Solid Foods, 3 ed. New York: Ed. Springer, pp.433.
Rao, M. A. & Cooley, H. J. (1993). Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels. Journal Food Science, 58:876-879.
Rao, M. A.; Okechukwu, P. M. S. & Oliveira, J. C. (1992). Rheological behavior of heated granule. Carbohydrate Polymers, 33:273-283.
Rao M, A.; Rizvi, S. S. H. & Datta, A. K. (2005). Engineering Properties of Foods, 3.ed. London: Taylor e Francis Group.pp.768.
Roberts S. A. & Cameron, R. E. (2002). The effects of concentration and sodium hydroxide on the rheological properties of potato starch gelatinisation. Carbohydrate Polymers, 50(2):133-143.
Rodrigues, L. B. O. (2014). Estudos reológicos e de textura dos géis de amido de araruta (Maranta arundinaceae L.) e dos géis adicionados de sacarose e concentrado protéico de soro. 2014. 69p. Dissertação (Mestrado em Engenharia e Ciência de Alimentos) - Universidade Estadual do Sudoeste da Bahia. UESB. Campus Itapetinga.
Sandhu, S. K. & Singh, N. (2007). Some properties of corn starches II. Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101:1499-1507.
Scharamm, G. (2006). Reologia e Reometria-Fundamentos teóricos e práticos, 1.ed. São Paulo: Artliber, pp.232.
Silva, A. M. (2019). Influência do tipo de amido e aquecimento - convencional e ôhmico - sobre as propriedades de géis. 2019. 71p. Dissertação (Mestrado em Engenharia Química) – Universidade Federal do Rio Grande do Sul. UFRS. Porto Alegre.
Singh, N. et al. (2006). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81:219-231.
Steffe, J. F. (1996). Rheological methods in food process engineering. 2. ed. Freeman Press, p.312-313, 412-418.
Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13:215-225.
Tester, R. F. & Morrison W. R. (1990). Swelling and gelatinization of cereal starch: I. Effects of amylopectin, amylose and lipids. Cereal Chemistry, 67(6):551-557.
Thomaz, C. E. P. (2002). Reologia e hidrodinâmica do escoamento de ovo líquido. 2002. 101p. Dissertação (Mestrado em Engenharia e Ciência de Alimentos). Instituto de Biociências, Letras e Ciências Exatas, UNESP. São José do Rio Preto-SP.
Tsai, M.; LI, C. & Lii, C. (1997). Effects of granular structure on the pasting behaviour of starches. Cereal Chemistry, 74(6):750-757.
Vamadevan, V. & Bertoft, E. (2015). Structure function relationships of starch components. Starch Stärke, 67(1-2): 55-68.
Zhang, B. et al. (2018). Comparison of structural and functional properties of starches from the rhizome and bulbil of chinese yam (Dioscorea opposite Thunb.). Molecules, 23(2): 427-439.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Mariana Silva Araújo ; Marcus Vinícius da Rocha Afonso; Nathalia da Silva Rodrigues Mendes; Adriana Régia Marques de Souza; Miriam Fontes Araújo Silveira; Deivis de Moraes Carvalho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.