Physicochemical and nutritional properties of jussara pulp powder (Euterpe edulis M.) by spray-drying

Authors

DOI:

https://doi.org/10.33448/rsd-v10i1.11256

Keywords:

Euterpe edulis Martius; Whey protein concentrate; Modified starch; Soy protein isolate.

Abstract

The jussara palm (Euterpe edulis) is well known for its great presence in several Brazilian states and produces an edible palm heart and spherical fruits popularly known as jussara. Due to their high anthocyanin content, these fruits contain only one light brown seed that is covered by thin and dark purple skin.  This study was carried out to evaluate the effects of different mixtures of carrier agents (CA) (modified starch-MS plus whey protein concentrate-WPC or soy protein isolate-SPI) on the characteristics of microcapsules containing spray-dried jussara pulp powder. Four treatments, 30%CAC+17.5%MS:WPC, 17.5%CAC+30%MS:WPC, 30%CAC+17.5%MS:SPI and 17.5%CAC+30%MS:SPI, were evaluated, where CAC=carrier agent concentration (g carrier/g jussara pulp solids) and the proportions MS:WPC and MS:SPI indicate the grams of protein (WPC or SPI) per 100g of carrier. The concentration of 30%CAC+17.5%MS:WPC improved the wettability, anthocyanin content, total phenolic content and encapsulation efficiency. The particles presented smoother surfaces with a reduced number of folds when WPC was present. The usage of WPC or SPI mutually with MS was shown as a valid option in the spray drying of jussara pulp.

References

Ahmed, M., Akter, M. S., Lee, J.-C., & Eun, J.-B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. https://doi.org/10.1016/j.lwt.2010.05.014

AOAC. (2016) Official method of analysis of the Association of Official Analytical Chemists (18th ed.). Gaithersburg, Maryland.

Barbosa, M. I. M. J., Borsarelli, C. D., & Mercadante, A. Z. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International, 38(8–9), 989–994. https://doi.org/10.1016/j.foodres.2005.02.018

Borges, G. D. S. C., Vieira, F. G. K., Copetti, C., Gonzaga, L. V., & Fett, R. (2011). Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology. Food Research International, 44(3), 708–715. https://doi.org/10.1016/j.foodres.2010.12.025

Botrel, D. A., de Barros Fernandes, R. V., Borges, S. V., & Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, 62, 344–352. https://doi.org/10.1016/j.foodres.2014.02.003

Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451. https://doi.org/10.1016/j.jfoodeng.2012.03.033

Cen, H., Bao, Y., He, Y., & Sun, D.-W. (2007). Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice. Journal of Food Engineering, 82(2), 253–260. https://doi.org/10.1016/j.jfoodeng.2007.02.039

Cinquanta, L., Di Matteo, M., & Esti, M. (2002). Physical pre-treatment of plums (Prunus domestica). Part 2. Effect on the quality characteristics of different prune cultivars. Food Chemistry, 79(2), 233–238. https://doi.org/10.1016/S0308-8146(02)00138-3

de Beer, D., Pauck, C. E., Aucamp, M., Liebenberg, W., Stieger, N., van der Rijst, M., & Joubert, E. (2018). Phenolic and physicochemical stability of a functional beverage powder mixture during storage: effect of the microencapsulant inulin and food ingredients. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.8787

de Brito, E. S., de Araújo, M. C. P., Alves, R. E., Carkeet, C., Clevidence, B. A., & Novotny, J. A. (2007). Anthocyanins Present in Selected Tropical Fruits: Acerola, Jambolão, Jussara, and Guajiru. Journal of Agricultural and Food Chemistry, 55(23), 9389–9394. https://doi.org/10.1021/jf0715020

Edris, A. E., Kalemba, D., Adamiec, J., & Piątkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chemistry, 204, 326–333. https://doi.org/10.1016/j.foodchem.2016.02.143

Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139–1147. https://doi.org/10.1016/j.foodchem.2011.05.093

Ferrari, C. C., Germer, S. P. M., Alvim, I. D., Vissotto, F. Z., & de Aguirre, J. M. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science & Technology, 47(6), 1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.x

Francis, F. J. (1982). Anthocyanins as Food Colors. In: Markasis, P., Analysis of anthocyanins. New York: Academic Press, Cap. 5, p.182-205.

García-Lucas, K. A., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J., Campanella, O. H., Patel, B. K., & Barriada-Bernal, L. G. (2017). Physical properties of spray dryed Stenocereus griseus pitaya juice powder. Journal of Food Process Engineering, 40(3), e12470. https://doi.org/10.1111/jfpe.12470

Hinneburg, I., Damien Dorman, H. J., & Hiltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97(1), 122–129. https://doi.org/10.1016/j.foodchem.2005.03.028

I Ré, M. (1998). MICROENCAPSULATION BY SPRAY DRYING. Drying Technology, 16(6), 1195–1236. https://doi.org/10.1080/07373939808917460

Jafari, S. M., Ghalegi Ghalenoei, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65. https://doi.org/10.1016/j.powtec.2017.01.070

Maia, P. D. D. S., dos Santos Baião, D., da Silva, V. P. F., de Araújo Calado, V. M., Queiroz, C., Pedrosa, C., Valente-Mesquita, V. L., & Pierucci, A. P. T. R. (2019). Highly Stable Microparticles of Cashew Apple (Anacardium occidentale L.) Juice with Maltodextrin and Chemically Modified Starch. Food and Bioprocess Technology, 12(12), 2107–2119. https://doi.org/10.1007/s11947-019-02376-x

Nambi, V. E., Manickavasagan, A., Thangavel, K., Aniesrani, D. S., Chandrasekar, V., & Raghavan, G. S. V. (2017). Effect of carrier material on flow characteristics of date pulp feedstock. Drying Technology, 35(1), 116–124. https://doi.org/10.1080/07373937.2016.1162170

Paim, D. R. S. F., Costa, S. D. O., Walter, E. H. M., & Tonon, R. V. (2016). Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT, 74, 21–25. https://doi.org/10.1016/j.lwt.2016.07.022

Pereira, D. C. de S., Beres, C., Gomes, F. dos S., Tonon, R. V., & Cabral, L. M. C. (2020). Spray drying of juçara pulp aiming to obtain a “pure” powdered pulp without using carrier agents. Drying Technology, 38(9), 1175–1185. https://doi.org/10.1080/07373937.2019.1625363

Reineccius, G. A. (2004). The Spray Drying of Food Flavors. Drying Technology, 22(6), 1289–1324. https://doi.org/10.1081/DRT-120038731

Rocha, J. de C. G., de Barros, F. A. R., Perrone, Í. T., Viana, K. W. C., Tavares, G. M., Stephani, R., & Stringheta, P. C. (2019). Microencapsulation by atomization of the mixture of phenolic extracts. Powder Technology, 343, 317–325. https://doi.org/10.1016/j.powtec.2018.11.040

Santana, A. A., Cano-Higuita, D. M., de Oliveira, R. A., & Telis, V. R. N. (2016). Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chemistry, 212, 1–9. https://doi.org/10.1016/j.foodchem.2016.05.148

Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006

Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418. https://doi.org/10.1016/j.jfoodeng.2008.02.029

Tonon, R. V., Brabet, C., Pallet, D., Brat, P., & Hubinger, M. D. (2009). Physicochemical and morphological characterisation of açai ( Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950–1958. https://doi.org/10.1111/j.1365-2621.2009.02012.x

Zhang, L., Zeng, X., Fu, N., Tang, X., Sun, Y., & Lin, L. (2018). Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food Research International, 106, 383–393. https://doi.org/10.1016/j.foodres.2018.01.004

Downloads

Published

24/01/2021

How to Cite

SILVA, L. M. O. da; SANTOS, G. A. S.; ROCHA, A. A.; RAPOSO, A. K. da S.; PAIXÃO, L. C.; SANTANA, A. A. Physicochemical and nutritional properties of jussara pulp powder (Euterpe edulis M.) by spray-drying. Research, Society and Development, [S. l.], v. 10, n. 1, p. e44110111256, 2021. DOI: 10.33448/rsd-v10i1.11256. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11256. Acesso em: 2 jan. 2025.

Issue

Section

Engineerings