Propiedades fisicoquímicas y nutricionales de la pulpa de jussara en polvo (Euterpe edulis M.) por secado por atomización

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i1.11256

Palabras clave:

Euterpe edulis Martius; Concentrado de proteína de suero; Almidón modificado; Aislado de proteína de soja.

Resumen

La palma jussara (Euterpe edulis) es bien conocida por su gran presencia en varios estados brasileños y produce un palmito comestible y frutos esféricos conocidos popularmente como jussara. Debido a su alto contenido de antocianinas, estas frutas contienen solo una semilla de color marrón claro que está cubierta por una piel fina y de color púrpura oscuro. Este estudio se llevó a cabo para evaluar los efectos de diferentes mezclas de agentes portadores (CA) (almidón modificado-MS más concentrado de proteína de suero-WPC o aislado de proteína de soja-SPI) sobre las características de las microcápsulas que contienen polvo de pulpa de jussara secada por aspersión. Se evaluaron cuatro tratamientos, 30% CAC + 17.5% MS: WPC, 17.5% CAC + 30% MS: WPC, 30% CAC + 17.5% MS: SPI y 17.5% CAC + 30% MS: SPI, donde CAC = portador la concentración del agente (g de portador / g de sólidos de pulpa de jussara) y las proporciones MS: WPC y MS: SPI indican los gramos de proteína (WPC o SPI) por 100 g de portador. La concentración de 30% CAC + 17,5% MS: WPC mejoró la humectabilidad, el contenido de antocianinas, el contenido fenólico total y la eficiencia de encapsulación. Las partículas presentaron superficies más suaves con un número reducido de pliegues cuando estaba presente WPC. El uso de WPC o SPI junto con MS se mostró como una opción válida en el secado por aspersión de pulpa de jussara.

Citas

Ahmed, M., Akter, M. S., Lee, J.-C., & Eun, J.-B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. https://doi.org/10.1016/j.lwt.2010.05.014

AOAC. (2016) Official method of analysis of the Association of Official Analytical Chemists (18th ed.). Gaithersburg, Maryland.

Barbosa, M. I. M. J., Borsarelli, C. D., & Mercadante, A. Z. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International, 38(8–9), 989–994. https://doi.org/10.1016/j.foodres.2005.02.018

Borges, G. D. S. C., Vieira, F. G. K., Copetti, C., Gonzaga, L. V., & Fett, R. (2011). Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology. Food Research International, 44(3), 708–715. https://doi.org/10.1016/j.foodres.2010.12.025

Botrel, D. A., de Barros Fernandes, R. V., Borges, S. V., & Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, 62, 344–352. https://doi.org/10.1016/j.foodres.2014.02.003

Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451. https://doi.org/10.1016/j.jfoodeng.2012.03.033

Cen, H., Bao, Y., He, Y., & Sun, D.-W. (2007). Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice. Journal of Food Engineering, 82(2), 253–260. https://doi.org/10.1016/j.jfoodeng.2007.02.039

Cinquanta, L., Di Matteo, M., & Esti, M. (2002). Physical pre-treatment of plums (Prunus domestica). Part 2. Effect on the quality characteristics of different prune cultivars. Food Chemistry, 79(2), 233–238. https://doi.org/10.1016/S0308-8146(02)00138-3

de Beer, D., Pauck, C. E., Aucamp, M., Liebenberg, W., Stieger, N., van der Rijst, M., & Joubert, E. (2018). Phenolic and physicochemical stability of a functional beverage powder mixture during storage: effect of the microencapsulant inulin and food ingredients. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.8787

de Brito, E. S., de Araújo, M. C. P., Alves, R. E., Carkeet, C., Clevidence, B. A., & Novotny, J. A. (2007). Anthocyanins Present in Selected Tropical Fruits: Acerola, Jambolão, Jussara, and Guajiru. Journal of Agricultural and Food Chemistry, 55(23), 9389–9394. https://doi.org/10.1021/jf0715020

Edris, A. E., Kalemba, D., Adamiec, J., & Piątkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chemistry, 204, 326–333. https://doi.org/10.1016/j.foodchem.2016.02.143

Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139–1147. https://doi.org/10.1016/j.foodchem.2011.05.093

Ferrari, C. C., Germer, S. P. M., Alvim, I. D., Vissotto, F. Z., & de Aguirre, J. M. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science & Technology, 47(6), 1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.x

Francis, F. J. (1982). Anthocyanins as Food Colors. In: Markasis, P., Analysis of anthocyanins. New York: Academic Press, Cap. 5, p.182-205.

García-Lucas, K. A., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J., Campanella, O. H., Patel, B. K., & Barriada-Bernal, L. G. (2017). Physical properties of spray dryed Stenocereus griseus pitaya juice powder. Journal of Food Process Engineering, 40(3), e12470. https://doi.org/10.1111/jfpe.12470

Hinneburg, I., Damien Dorman, H. J., & Hiltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97(1), 122–129. https://doi.org/10.1016/j.foodchem.2005.03.028

I Ré, M. (1998). MICROENCAPSULATION BY SPRAY DRYING. Drying Technology, 16(6), 1195–1236. https://doi.org/10.1080/07373939808917460

Jafari, S. M., Ghalegi Ghalenoei, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65. https://doi.org/10.1016/j.powtec.2017.01.070

Maia, P. D. D. S., dos Santos Baião, D., da Silva, V. P. F., de Araújo Calado, V. M., Queiroz, C., Pedrosa, C., Valente-Mesquita, V. L., & Pierucci, A. P. T. R. (2019). Highly Stable Microparticles of Cashew Apple (Anacardium occidentale L.) Juice with Maltodextrin and Chemically Modified Starch. Food and Bioprocess Technology, 12(12), 2107–2119. https://doi.org/10.1007/s11947-019-02376-x

Nambi, V. E., Manickavasagan, A., Thangavel, K., Aniesrani, D. S., Chandrasekar, V., & Raghavan, G. S. V. (2017). Effect of carrier material on flow characteristics of date pulp feedstock. Drying Technology, 35(1), 116–124. https://doi.org/10.1080/07373937.2016.1162170

Paim, D. R. S. F., Costa, S. D. O., Walter, E. H. M., & Tonon, R. V. (2016). Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT, 74, 21–25. https://doi.org/10.1016/j.lwt.2016.07.022

Pereira, D. C. de S., Beres, C., Gomes, F. dos S., Tonon, R. V., & Cabral, L. M. C. (2020). Spray drying of juçara pulp aiming to obtain a “pure” powdered pulp without using carrier agents. Drying Technology, 38(9), 1175–1185. https://doi.org/10.1080/07373937.2019.1625363

Reineccius, G. A. (2004). The Spray Drying of Food Flavors. Drying Technology, 22(6), 1289–1324. https://doi.org/10.1081/DRT-120038731

Rocha, J. de C. G., de Barros, F. A. R., Perrone, Í. T., Viana, K. W. C., Tavares, G. M., Stephani, R., & Stringheta, P. C. (2019). Microencapsulation by atomization of the mixture of phenolic extracts. Powder Technology, 343, 317–325. https://doi.org/10.1016/j.powtec.2018.11.040

Santana, A. A., Cano-Higuita, D. M., de Oliveira, R. A., & Telis, V. R. N. (2016). Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chemistry, 212, 1–9. https://doi.org/10.1016/j.foodchem.2016.05.148

Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006

Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418. https://doi.org/10.1016/j.jfoodeng.2008.02.029

Tonon, R. V., Brabet, C., Pallet, D., Brat, P., & Hubinger, M. D. (2009). Physicochemical and morphological characterisation of açai ( Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950–1958. https://doi.org/10.1111/j.1365-2621.2009.02012.x

Zhang, L., Zeng, X., Fu, N., Tang, X., Sun, Y., & Lin, L. (2018). Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food Research International, 106, 383–393. https://doi.org/10.1016/j.foodres.2018.01.004

Descargas

Publicado

24/01/2021

Cómo citar

SILVA, L. M. O. da; SANTOS, G. A. S.; ROCHA, A. A.; RAPOSO, A. K. da S.; PAIXÃO, L. C.; SANTANA, A. A. Propiedades fisicoquímicas y nutricionales de la pulpa de jussara en polvo (Euterpe edulis M.) por secado por atomización. Research, Society and Development, [S. l.], v. 10, n. 1, p. e44110111256, 2021. DOI: 10.33448/rsd-v10i1.11256. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11256. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías