Pigs fed various levels of crude protein and raised above the thermoneutral zone: effects on protein metabolism and nitrogen balance





Amino acids; Digestibility; Oxidation protein; Swine; Thermoneutrality; Urea.


We evaluated performance, nutrient balance, nitrogen balance, and serum parameters in pigs in the nursery phase raised in environmental conditions above the thermoneutral zone that were fed with diets containing various levels of crude protein (CP). A total of 15 barrows (22.75 ± 1.58 kg) were housed in metabolism pens and distributed in a completely randomized design with three treatments: 15.5%, 18.3%, and 21.0% of CP, designated T15, T18, and T21, respectively. There was a gradual increase of temperature over the first three days from 25 to 29.1 ± 2.3 °C. From d18 to d20 of the experiment, pigs received the same diet (18% CP) and thermoneutral conditions were reestablished (22.9 ± 1.9 ºC). There were higher values of urinary, excreted, and absorbed nitrogen in T21, followed by T18 and T15. Blood urea levels were higher in treatments with higher protein levels. On d4 (adaptation period), cholesterol levels were higher in the T15 group than in the T21 group, antioxidant power of iron reduction values were lower in the T18 group than the T21 group. Advanced oxidation protein products (AOPP) on day 16 were higher in the T15 group, associated with the accumulation of heat stress and lower CP diets. Similar results were obtained for T18 with higher AOPP values on d16 than on d8 and d12. However, there were greater AOPP values in the T21 group on d20 (when the CP level was reduced to 18%) than on d8. Amino acid supplementation and reduction of CP in the diet to levels of 15.5% in piglets raised above the thermoneutral zone improved the use of CP. Furthermore, 15.5% of CP in the diet reduced the excretion of urinary nitrogen. The N-retention was not affected by dietary CP level, using the ideal protein concept. The use of 21%-CP in the diet efficiently avoided exacerbation of protein oxidation for pigs raised above thermoneutrality.


Adeola, O. (2001). Digestion and balance techniques in pigs. In: Lewis, A. J., Sourthern, L. L. Swine nutrition, (2nd ed.), Boca Raton: CRC, 903-916.

AOAC (1984). Association of Official Analytical Chemists (AOAC). Official methods of analysis, (14th ed.). Arlington.

AOAC (2002). Association of Official Analytical Chemist (AOAC). Official methods of analysis, (17th ed.), AOAC Inc. Arlington, VA, USA.

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76.

Campos, P. H. R .F., LE Floc’h, N., Noblet, J., & Renaudeau, D. (2017). Physiological responses of growing pigs to high ambient temperature and/or inflammatory challenges. R. Bras. Zootec. 46, 37-544.

Celi, P., & Gaba, G. (2015). Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation. Front. Vet. Sci. 2, 48.

Ceron, M. S., Oliveira, V., Lovatto, P. A., & Vale, M. M. (2013). Maintenance requirement and deposition efficiency of lysine in pigs. Pesq. Agropec. Bras. 48, 1269-1274.

Cervantes, M., Antoine, D., Valle, J. A., Vásquez, N., Camacho, R. L., Bernal, H., & Morales, A. (2018). Effect of feed intake level on the body temperature of pigs exposed to heat stress conditions. J. Therm. Biol. 76, 1-7.

De Haer, L. C. M., & De Vries, A. G. (1993). Feed intake patterns of and feed digestibility in growing pigs housed individually or in groups. Livest. Prod. Sci. 33, 277-292.

Ferreira, R. A., Oliveira, R. F. M., Donzele, J. L., Araújo, C. V., Silva, F. C. O., Vaz, R. G. M. V., & Rezende, W. O. (2006). Effect of feeding reduced crude protein, amino acid-supplemented diets on performance of castrated swine from 15 to 30 kg on high environmental temperature. R. Bras. Zootec. 35, 1056-1062.

Fraga, A. L., Moreira, I., Furlan, A. C., Bastos, A. O., Oliveira, R. P., & Murakami, A. E. (2008). Lysine requirement of starting barrows from two genetic groups, fed on low crude protein diets. Braz. Arch. Biol. Technol. 51, 49-56.

Freitag, D. C., Klosowski, E. S., Pozza, P. C., Oliveira, A. C., Tsutsumi, C. Y., Nunes, R. V., & Sangali, C. P. (2014). Reducing crude protein in diets on the metabolic balances for pigs kept in different thermal conditions. Semina: Ciênc. Biol. Saúde. 35, 61-70.

Gloaguen, M., Le Floc'h, N., Corrent, E., Primot, Y., & Van Milgen, J. (2014). The use of free amino acids allows formulating very low crude protein diets for piglets. J Anim Sci. 92(2):637-644.

Hanasand, M., Omdal, R., Norheim, K. B., Goransson, L. G., & Brede, C. (2012). Improved detection of advanced oxidation protein products in plasma. Clin. Chim. Acta. 413, 901–906.

Huynh, T. T. T., Aarninka, A. J. A., Gerritsc, W. J. J., Heetkampd, M. J. H., Canhe, T. T., Spoolderf, H. A. M., Kempd, B., & Verstegenc, M. W. A. (2005). Thermal behavior of growing pigs in response to high temperature and humidity. Appl. Anim. Behav. Sci. 91, 1-16.

Hyun, Y., &Ellis. M. (2001). Effect of group size and feeder type on growth performance and feeding patterns in growing pigs. J. Animal Sci. 79, 803-810.

Jentzsch, A. M., Bachmann, H., Furst, P., & Biesalski, H. (1996). Improved analysis of malondialdehyde in human body fluids. Free Radical Bio. Med. 20, 251–256.

Le Bellego, L., Van Milgen, J., &Noblet, J. (2001). Energy utilization of low protein diets in growing pigs. J. Animal Sci. 79, 1259-1271.

Nääs, I. A., Cordeiro, A. F. S. Ambiência na fase de creche. In: Produção de suínos Teoria e prática. In: Ferreira, A. D., Carraro, B., Dallanora, D., Machado, D., Machado, I. P., Pinheiro, R., Rohr, S., 2014. Produção de suínos: teoria e prática. ABCS, 633-635.

Oliveira, V., Fialho, E. T., Lima, J. A. F., & Araújo, J. S. (2007). Nitrogen metabolism of swine fed with low crude protein diets. R. Bras. Agrociência. 13, 257-260.

Orlando, U. A. D., Oliveira, R. F. M., Donzele, J. L., Ferreira, R. A., Silva, F. C. O., Vieira Vaz, R. G. M. V., & Siqueira, J. C. (2007). Crude protein levels and amino acid supplementation in diets of gilts maintained in a high environmental temperature from 60 to 100 kg. R. Bras. Zootec. 36, 1069-1075.

Pekas, J. C. (1968). Versatile swine laboratory apparatus for physiologic and metabolic studies. J. Animal Sci. 27, 1303-1309.

Pereira, A. S., Shitsuka, D. M., Pereira, F. J. & Shitsuka R. (2018). Methodology of cientific research. UAB / NTE / UFSM Editors. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Quiniou, N., Dubois, S., & Noblet, J. (2000). Voluntary feed intake and feeding behaviour of group-housed growing pigs are affected by ambient temperature and body weight. Livest. Prod. Sci. 63, 245-253.

Recharla, N., Kim, K., Park, J., Jeong, J., Jeong, Y., Lee, H., Hwang, O., Ryu, J., Baek, Y., Oh, Y., & Park, S. (2017). Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta. J. Anim. Sci. Technol. 59, 1-8.

Renaudeau, D., Anais, C., Tel, L., & Gourdine, J. L. (2010). Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function. J. Animal Sci. 88, 3715-3724.

Renaudeau, D., Collin, A., Yahav, S., Basilio, V., Gourdine, J. L., & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. 6, 707–728.

Renaudeau, D., Gourdine, J. L., & St-Pierre, N. R. (2011). A meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs. J. Animal Sci. 89, 2220- 2230.

Rostagno, H. S., Albino, L. F. T., Donzele, J. L. Sakomura, N. K., Perazzo, F. G., Saraiva, A., Teixeira. M. L., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. R., & Brito, C. O. (2017). Tabelas Brasileiras para Aves e Suínos. Composição de Alimentos e Exigências Nutricionais (4a ed.), UFV, 488.

Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Gomes, P. C., Oliveira, R. F., Lopes, D. C., Ferreira, A. S., Barreto, S. L. T., & Euclides, R. F. (2011). Tabelas Brasileiras para Aves e Suínos. Composição de Alimentos e Exigências Nutricionais. Editora UFV, 252.

Sakomura, N. K., & Rostagno, H. S. (2016). Métodos de pesquisa em nutrição de monogástricos. FUNEP (2a ed.), 262p.

Tavares, S. L. S., Donzele, J. L., Oliveira, R. F. M., & Ferreira, A. S. (2000). Influence of Environment Temperature on the Performance and the Physiological Traits of Barrows from 30 to 60 kg. R. Bras. Zootec. 29, 199-205.

Toledo, J. B., Furlan, A. C., Pozza, P. C., Carraro, J., Moresco, G., Ferreira, S. L. &Gallego, A. G. (2014). Reduction of the crude protein content of diets supplemented with essential amino acids for piglets weighing 15 to 30 kilograms. R. Bras. Zootec. 43, 301-309.

Zuidhof, M. (2019). A Review of Dietary Metabolizable and Net Energy: Uncoupling Heat Production and Retained Energy. J. Appl. Poult. Res. 28(2), 231-241.

Wang, Y., Zhou, J., Wang, G., Cai, S., Zeng, X., & Qiao, S. (2018). Advances in low-protein diets for swine. J. Anim. Sci. Technol. 9, 1-14.

Wolp, R. C., Rodrigues, N. E. B., Zangeronimo, M. G., Cantarelli, V. S., Fialho, E. T., Philomeno, R., Alvarenga, R. R., & Roch, L. F. (2012). Soybean oil and crude protein levels for growing pigs kept under heat stress conditions. Livest. Sci. 147, 148–153.

Xin, H., & Harmon, J. D. (1998). Livestock Industry facilities and environment: heat stress indices for livestock agriculture and environment extension publications. 163. http://lib.dr.iastate.edu/extension_ag_pubs/163.




How to Cite

OLIVEIRA, S. C. de .; SOUZA, M. R.; BAGGIO, R. A.; BOITO, J. P. .; PASQUETTI, T. J.; SANTOS, T. M. B. dos .; MORESCO, R. N. .; SILVA, A. S. da; PAIANO, D. Pigs fed various levels of crude protein and raised above the thermoneutral zone: effects on protein metabolism and nitrogen balance. Research, Society and Development, [S. l.], v. 10, n. 1, p. e21210111345, 2021. DOI: 10.33448/rsd-v10i1.11345. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11345. Acesso em: 26 jan. 2021.



Agrarian and Biological Sciences