Biosorption study of magnesium, zinc, iron and selene in Spirulina platensis high concentration crops
DOI:
https://doi.org/10.33448/rsd-v10i2.12154Keywords:
Biofixation; Enrichment; Photobioreactors; Spirulina platensis.Abstract
Mineral biosorption is a technique that can bring significant gains to the production of functional biomass. The results guarantee economy (due to the absence of mineral addition in dry biomass), minimization of time and a step by step elimination in the production process. The aim of the present work was to study the incorporation of zinc, magnesium, iron and selenium in the biomass of Spirulina platensis through the application of central composite factorial designs. The experiments were performed in a vegetative greenhouse in 10-liter photobioreactors, aiming the maximum absorption of the minerals over five days. Significant influence was observed in the incorporation of magnesium (410 mg.100-1g) and zinc (34.84 mg.100-1g). It was also observed in the incorporation of Fe (73.5 mg.100-1g) and selenium (1,738.81 mg.100-1g), showing the potential use of the technique to incorporate these minerals in Spirulina platensis biomass and ensuring wide application of this raw in foods and supplements.
References
Arai, S. (1996). Studies on Functional Foods in Japan - State of the Art. Bioscience Biotechnology Biochemistry, 60, 9-15.
Box, G. E. P. & Hunter, J. S. (1987). Multi-factor experimental designs for exploring response surfaces. Annals of mathematical statistics, 28, 195-241.
Buckley, T. N. (2019). How do stomata respond to water status? Tansley review. New Phytologist, 224, 21-36.
Chen, T., Zhen, W., Wong, Y. S., Yang, F. & Bai, Y. (2006). Accumulation of selenium in mixotrophic culture of Spirulina plantensis on glucose. Bioresource Technology, 97, 2260-2265.
Chen, T. F., Cui, X. F., Yang, F., Zheng, W. J. & Bai, Y. (2005). Culture of High Selenium-enriched Spirulina platensis with a Stepwise Selenium Addition Method and Its Effects on the Photosynthetic Pigment and Protein Contents of the Microalgae. Food Fermentation Industries, 8, 48-51.
Das, N., Vimala, R. & Karthika, P. (2008). Biosorption of Heavy Metals—An Overview. Indian Journal of Biotechnology, 7, 159-169.
De Philippis, R., Colica, G. & Mecarozzi, P. (2011). Exopolysaccharide-producing cyanobacteria in Heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnolog, 92, 697-708.
Ellis, D. R. & Salt, D. E. (2003). Plants, selenium and human health. Current Opinion in Plant Biology, 6, 273-279.
Fox, R. D. (1996). Spirulina – Production & Potential. Aix-en-Province: Edisud, France.
Gong, R., Ding, Y., Liu, H., Chen, Q. & Liu, Z. (2005). Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere, 58, 125-130.
Grobbelaar, J. U. (2004). In: Richmond A (ed) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd, Oxford
Hopkins, W. G. & Hüner, N. P. (2009). Introduction to Plant Physiology. John Wiley, New York.
IAL - Instituto Adolfo Lutz. Ed. (2008). Métodos Físico-Químicos para Análise de Alimentos. IMESP, São Paulo.
Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N. & Assimakopoulos, D. A. (2008). Spirulina in clinical practice: evidence-based human applications. Evidence-based Complementary and Alternative Medicine, 2011, 1-4.
Kotrba, P.; Mackova, M. & Macek, T. (2011). Microbial Biosorption of Metals. Springer Netherlands, Dordrecht.
León, R.; Cejudo, A. G. & Fernández, E. (2007). Transgenic Microalgae as Green Cell Factories. Springer-Verlag, New York.
Li, Z. Y., Guo, S. Y. & Li, L. (2003). Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresource Technology, 89, 171-176.
Lodish, H.; Berk, A.; Zipursky, S. L.; Matsudaira, P.; Baltimore, D. & Darnell, J. (2000). Molecular cell biology. W H Freeman, New York.
Melo, A. O.; Castiglioni, G. L.; Souza, G. H. P.; Souza, C. G. (2015). Enriquecimento mineral de Spirulina platensis com ferro (Fe) e selênio (Se). Revista de Patologia Tropical (Impresso), 44, 108-108.
Melo, R. D.; Silva, J. Y. P.; Silva, T. D. O. L. E; Soares, J. K. B.; Oliveira, M. E. G.; Donato, N. R. (2020). Development, physical, physical-chemical and sensory evaluation of fresh pasta enriched with Spirulina platensis: an alternative for infant feeding. Research, Society and Development, 9, 1-20.
Molnár, S., Kiss, A., Virág, D. & Forgó, P. (2013). Comparative studies on accumulation of selected microelements by Spirulina platensis and Chlorella vulgaris with the prospects of functional food development. Chemical Engineering & Process Technology Journal, 4, 1-6.
Naito, K., Matsui, M. & Imai, I. (2005). Ability of marine eukaryotic red tide microalgae to utilize insoluble iron. Harmful Algae, 4, 1021-1032.
Naja, G. & Volesky, B. (2011). In: Kotrba P, Mackova M, Macek T (ed) Microbial Biosorption of Metals. Springer, Dordrecht.
Newman, I. A. (2001). Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant, Cell & Environment, 24, 1-14.
Omar, H. (2002). Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. International Biodeterioration & Biodegradation, 50,95-100.
Palanisami, S., Lee, K. & Nam, P. K. (2013). Nutrient feeding strategy determines the fate of Microalgal growth and carbon metabolizing enzyme system - A study with Desmodesmus commuis LUCC 002. International Journal of Current Microbiology and Applied Sciences, 2, 233-239.
Reboleira, J.; Freitas, R.; Pinteus, S.; Silva, J.; Alves, C.; Pedrosa, R. & Bernardino, S. (2019). Spirulina. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press, Cambridge.
Reid, R. & Hayes, J. (2003). Mechanisms and Control of Nutrient Uptake in Plants. International review of cytology. Supplement, 229, 73-114.
Richmond, A. & Hu, Q. (2013). Handbook of Microalgal Culture: Applied Phycology and Biotechnology. John Wiley & Sons, Ltd, Pondicherry.
Saeid, A., Chojnacka, K., Korczyński, M., Korniewicz, D. & Dobrzański, Z. (2013). Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. Journal of Applied Phycology, 25, 667-675.
Sahin, I., Keskin, S. Y. & Keskin, C. S. (2013). Biosorption of cadmium, manganese, nickel, lead, and zinc ions by Aspergillus tamarii. Desalination and Water Treatment, 51, 4524-4529.
Saygideger, S., Gulnaz, O., Istifli, E. S. & Yucel, N. (2005). Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: Effect of physicochemical environment. Journal of Hazardous Materials, 126, 96-104.
Schümann, K., Ettle, T., Szegner, B., Elsenhans, B. & Solomons, N. W. (2007). On risks and benefits of iron supplementation recommendations for iron intake revisited. Journal of Trace Elements in Medicine and Biology, 21, 147-168.
Smith, P. J. S., Hammar, K., Porterfield, D. M., Sanger, R. H. & Trimarchi, J. R. (1999). Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microscopy Research and Technique, 46, 398-417.
Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87-96.
Tiantian, Z., Lihua, C., Xinhua, X., Lin, Z. & Huanlin, C. (2011). Advances on heavy metal removal from aqueous solution by algae. Progress in Chemistry, 23, 1782-1794.
Tokuşoglu, Ö. & üUnal, M. K. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68, 1144-1148.
Worms, I., Simon, D. F., Hassler, C. S. & Wilkinson, K. J. (2006). Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie, 88, 1721-1731.
Yeesang, C. & Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102, 3034-3040.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Gabriel Luis Castiglioni; Fernanda Ferreira Freitas; Celso José de Moura; Marco Antônio Assfalk de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.