Estudo da biossorção de magnésio, zinco, ferro e selênio em cultivos de alta concentricão de Spirulina platensis
DOI:
https://doi.org/10.33448/rsd-v10i2.12154Palavras-chave:
Biofixação; Enriquecimento; Fotobiorreatores; Spirulina platensis.Resumo
A biossorção de minerais é uma técnica que pode trazer ganhos significativos na produção de biomassa funcional. Os resultados podem garantir economia (por não adicionar minerais na biomassa seca), minimização do tempo e eliminação de etapas no processo produtivo. O objetivo do presente trabalho foi estudar a incorporação de zinco, magnésio, ferro e selênio na biomassa de Spirulina platensis por meio da aplicação de Planejamento Fatorial Composto Central. Os experimentos foram conduzidos em casa de vegetação em fotobiorreatores de 10 litros, tendo por objetivo a biossorção máxima dos minerais em cinco dias. Foi observada influência significativa na incorporação de magnésio (410 mg.100-1g) e zinco (34,84 mg.100-1g). Também foi observado na incorporação de Fe (73,5 mg.100-1g) e selênio (1.738,81 mg.100-1g), evidenciando o potencial de uso da técnica para incorporar esses minerais na biomassa de Spirulina platensis e garantir ampla aplicação desta matéria prima em alimentos e suplementos.
Referências
Arai, S. (1996). Studies on Functional Foods in Japan - State of the Art. Bioscience Biotechnology Biochemistry, 60, 9-15.
Box, G. E. P. & Hunter, J. S. (1987). Multi-factor experimental designs for exploring response surfaces. Annals of mathematical statistics, 28, 195-241.
Buckley, T. N. (2019). How do stomata respond to water status? Tansley review. New Phytologist, 224, 21-36.
Chen, T., Zhen, W., Wong, Y. S., Yang, F. & Bai, Y. (2006). Accumulation of selenium in mixotrophic culture of Spirulina plantensis on glucose. Bioresource Technology, 97, 2260-2265.
Chen, T. F., Cui, X. F., Yang, F., Zheng, W. J. & Bai, Y. (2005). Culture of High Selenium-enriched Spirulina platensis with a Stepwise Selenium Addition Method and Its Effects on the Photosynthetic Pigment and Protein Contents of the Microalgae. Food Fermentation Industries, 8, 48-51.
Das, N., Vimala, R. & Karthika, P. (2008). Biosorption of Heavy Metals—An Overview. Indian Journal of Biotechnology, 7, 159-169.
De Philippis, R., Colica, G. & Mecarozzi, P. (2011). Exopolysaccharide-producing cyanobacteria in Heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnolog, 92, 697-708.
Ellis, D. R. & Salt, D. E. (2003). Plants, selenium and human health. Current Opinion in Plant Biology, 6, 273-279.
Fox, R. D. (1996). Spirulina – Production & Potential. Aix-en-Province: Edisud, France.
Gong, R., Ding, Y., Liu, H., Chen, Q. & Liu, Z. (2005). Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere, 58, 125-130.
Grobbelaar, J. U. (2004). In: Richmond A (ed) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd, Oxford
Hopkins, W. G. & Hüner, N. P. (2009). Introduction to Plant Physiology. John Wiley, New York.
IAL - Instituto Adolfo Lutz. Ed. (2008). Métodos Físico-Químicos para Análise de Alimentos. IMESP, São Paulo.
Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N. & Assimakopoulos, D. A. (2008). Spirulina in clinical practice: evidence-based human applications. Evidence-based Complementary and Alternative Medicine, 2011, 1-4.
Kotrba, P.; Mackova, M. & Macek, T. (2011). Microbial Biosorption of Metals. Springer Netherlands, Dordrecht.
León, R.; Cejudo, A. G. & Fernández, E. (2007). Transgenic Microalgae as Green Cell Factories. Springer-Verlag, New York.
Li, Z. Y., Guo, S. Y. & Li, L. (2003). Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresource Technology, 89, 171-176.
Lodish, H.; Berk, A.; Zipursky, S. L.; Matsudaira, P.; Baltimore, D. & Darnell, J. (2000). Molecular cell biology. W H Freeman, New York.
Melo, A. O.; Castiglioni, G. L.; Souza, G. H. P.; Souza, C. G. (2015). Enriquecimento mineral de Spirulina platensis com ferro (Fe) e selênio (Se). Revista de Patologia Tropical (Impresso), 44, 108-108.
Melo, R. D.; Silva, J. Y. P.; Silva, T. D. O. L. E; Soares, J. K. B.; Oliveira, M. E. G.; Donato, N. R. (2020). Development, physical, physical-chemical and sensory evaluation of fresh pasta enriched with Spirulina platensis: an alternative for infant feeding. Research, Society and Development, 9, 1-20.
Molnár, S., Kiss, A., Virág, D. & Forgó, P. (2013). Comparative studies on accumulation of selected microelements by Spirulina platensis and Chlorella vulgaris with the prospects of functional food development. Chemical Engineering & Process Technology Journal, 4, 1-6.
Naito, K., Matsui, M. & Imai, I. (2005). Ability of marine eukaryotic red tide microalgae to utilize insoluble iron. Harmful Algae, 4, 1021-1032.
Naja, G. & Volesky, B. (2011). In: Kotrba P, Mackova M, Macek T (ed) Microbial Biosorption of Metals. Springer, Dordrecht.
Newman, I. A. (2001). Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant, Cell & Environment, 24, 1-14.
Omar, H. (2002). Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. International Biodeterioration & Biodegradation, 50,95-100.
Palanisami, S., Lee, K. & Nam, P. K. (2013). Nutrient feeding strategy determines the fate of Microalgal growth and carbon metabolizing enzyme system - A study with Desmodesmus commuis LUCC 002. International Journal of Current Microbiology and Applied Sciences, 2, 233-239.
Reboleira, J.; Freitas, R.; Pinteus, S.; Silva, J.; Alves, C.; Pedrosa, R. & Bernardino, S. (2019). Spirulina. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press, Cambridge.
Reid, R. & Hayes, J. (2003). Mechanisms and Control of Nutrient Uptake in Plants. International review of cytology. Supplement, 229, 73-114.
Richmond, A. & Hu, Q. (2013). Handbook of Microalgal Culture: Applied Phycology and Biotechnology. John Wiley & Sons, Ltd, Pondicherry.
Saeid, A., Chojnacka, K., Korczyński, M., Korniewicz, D. & Dobrzański, Z. (2013). Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. Journal of Applied Phycology, 25, 667-675.
Sahin, I., Keskin, S. Y. & Keskin, C. S. (2013). Biosorption of cadmium, manganese, nickel, lead, and zinc ions by Aspergillus tamarii. Desalination and Water Treatment, 51, 4524-4529.
Saygideger, S., Gulnaz, O., Istifli, E. S. & Yucel, N. (2005). Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: Effect of physicochemical environment. Journal of Hazardous Materials, 126, 96-104.
Schümann, K., Ettle, T., Szegner, B., Elsenhans, B. & Solomons, N. W. (2007). On risks and benefits of iron supplementation recommendations for iron intake revisited. Journal of Trace Elements in Medicine and Biology, 21, 147-168.
Smith, P. J. S., Hammar, K., Porterfield, D. M., Sanger, R. H. & Trimarchi, J. R. (1999). Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microscopy Research and Technique, 46, 398-417.
Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87-96.
Tiantian, Z., Lihua, C., Xinhua, X., Lin, Z. & Huanlin, C. (2011). Advances on heavy metal removal from aqueous solution by algae. Progress in Chemistry, 23, 1782-1794.
Tokuşoglu, Ö. & üUnal, M. K. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68, 1144-1148.
Worms, I., Simon, D. F., Hassler, C. S. & Wilkinson, K. J. (2006). Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie, 88, 1721-1731.
Yeesang, C. & Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102, 3034-3040.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Gabriel Luis Castiglioni; Fernanda Ferreira Freitas; Celso José de Moura; Marco Antônio Assfalk de Oliveira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.