A distinct molecular signature on anhydrobiotic cyanobacterial metallothioneins

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12714

Keywords:

Anhydrobiosis; COFACTOR; Cyanobacteria; Homology-modeling; Metallothionein; SWISS-MODEL.

Abstract

Anhydrobiosis refers to a state of suspended animation in which some organisms enter when exposed to extreme desiccation, ensuring them an outstanding tolerance to several physical stresses due to molecular and cellular adaptations. Metallothioneins (MTs) are short cysteine-rich metal-chelating proteins that work as a cellular protection element in metal ion-rich conditions. Here we aimed to investigate possible molecular signatures in primary and tertiary structures in anhydrobiotic cyanobacterial MTs. Anhydrobiotic and non-anhydrobiotic cyanobacterial MT amino acid sequences were retrieved from NCBI database and aligned in Clustal Omega server. Additionally, the amino acid compositions of these sequences were determined by GeneRunner. Further, we carried out homology-modeling via SWISS-MODEL, structural superposition in UCSF Chimera 1.4 Matchmaker tool and ligand-binding site prediction via COFACTOR. In silico analyses revealed specific divergences in amino acid positions between MT groups, evidencing positive and negative selections, however without affecting final protein structures. Some of these changes on polypeptide sequence potentially enhance protein stabilization during desiccation, whereas others possibly act as additional metal-ion coordinating residues. Analyses on the molecular adaptations on anhydrobiotic cyanobacterial MTs help shed light on their molecular functions and biological roles, as well as may have applications on the development of desiccation- and metal-tolerant organisms.

References

Blindauer, C. A., Harrison, M. D., Parkinson, J. A., Robinson, A. K., Cavet, J. S., Robinson, N. J., & Sadler, P. J. (2001). A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity. Proceedings of the National Academy of Sciences, 98(17), 9593-9598.

Blindauer, C. A., Harrison, M. D., Robinson, A. K., Parkinson, J. A., Bowness, P. W., Sadler, P. J., & Robinson, N. J. (2002). Multiple bacteria encode metallothioneins and SmtA‐like zinc fingers. Molecular microbiology, 45(5), 1421-1432.

Blindauer, C. A. (2011). Bacterial metallothioneins: past, present, and questions for the future. JBIC Journal of Biological Inorganic Chemistry, 16(7), 1011.

Capdevila, M., & Atrian, S. (2011). Metallothionein protein evolution: a miniassay. JBIC Journal of Biological Inorganic Chemistry, 16(7), 977-989.

Chaturvedi, R., & Archana, G. (2014). Cytosolic expression of synthetic phytochelatin and bacterial metallothionein genes in Deinococcus radiodurans R1 for enhanced tolerance and bioaccumulation of cadmium. Biometals, 27(3), 471-482.

Clamp, M., Cuff, J., & Barton, G. (1998). JalView–analysis and manipulation of multiple sequence alignments. EMBnet News, 5(4), 16-21.

Collett, H., Shen, A., Gardner, M., Farrant, J. M., Denby, K. J., & Illing, N. (2004). Towards transcript profiling of desiccation tolerance in Xerophyta humilis: construction of a normalized 11 k X. humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehydration. Physiologia Plantarum, 122(1), 39-53.

Emoto, T., Kurasaki, M., Oikawa, S., Suzuki-Kurasaki, M., Okabe, M., Yamasaki, F., & Kojima, Y. (1996). Roles of the conserved serines of metallothionein in cadmium binding. Biochemical genetics, 34(5-6), 239-251.

Erkut, C., Penkov, S., Khesbak, H., Vorkel, D., Verbavatz, J. M., Fahmy, K., & Kurzchalia, T. V. (2011). Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Current Biology, 21(15), 1331-1336.

Habjanič, J., Chesnov, S., Zerbe, O., & Freisinger, E. (2020). Impact of naturally occurring serine/cysteine variations on the structure and function of Pseudomonas metallothioneins. Metallomics, 12(1), 23-33.

Hashimshony, T., Feder, M., Levin, M., Hall, B. K., & Yanai, I. (2015). Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature, 519(7542), 219-222.

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., ... & Thompson, J. D. (2007). Clustal W and Clustal X version 2.0. bioinformatics, 23(21), 2947-2948.

Lopez-Martinez, G., Benoit, J. B., Rinehart, J. P., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2009). Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. Journal of Comparative Physiology B, 179(4), 481-491.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612.

Schill, R. O., Mali, B., Dandekar, T., Schnölzer, M., Reuter, D., & Frohme, M. (2009). Molecular mechanisms of tolerance in tardigrades: New perspectives for preservation and stabilization of biological material. Biotechnology Advances, 27(4), 348-352.

Spruyt, M., & Buquicchio, F. (1994). Gene runner version 3.05. Website http://www. generunner. net/[accessed 10 April 2015].

Tsai, H. H., Tsai, C. J., Ma, B., & Nussinov, R. (2004). In silico protein design by combinatorial assembly of protein building blocks. Protein science, 13(10), 2753-2765.

Tunnacliffe, A., & Lapinski, J. (2003). Resurrecting Van Leeuwenhoek's rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1438), 1755-1771.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., ... & Lepore, R. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303.

Zhang, C., Freddolino, P. L., & Zhang, Y. (2017). COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic acids research, 45(W1), W291-W299.

Downloads

Published

27/02/2021

How to Cite

CONTILIANI, D. F. .; MORAES, V. N. de .; RIBEIRO, Y. de A. .; PEREIRA, T. C. . A distinct molecular signature on anhydrobiotic cyanobacterial metallothioneins. Research, Society and Development, [S. l.], v. 10, n. 2, p. e50610212714, 2021. DOI: 10.33448/rsd-v10i2.12714. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12714. Acesso em: 2 nov. 2024.

Issue

Section

Agrarian and Biological Sciences