Interaction between S. cerevisiae MONA, PE-2, CAT-1 and ATCC in fermentation sugar cane broth

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12791

Keywords:

Ethanol; Co-culture; Metabolic behavior.

Abstract

The diversity microbial in ethanolic fermentation generate different behavior metabolic that depended on the microorganisms present. Some kinetic parameters can tell how interactions between microorganisms are occurring in fermentation and can also predict your metabolic behaviors. However, there are little studys about the influence of interactions microbial on kinetic parameters in fermentation sugar cane. Therefore, this work aimed to understand the influence of the yeast strain Saccharomyces cerevisiae CAT-1, MONA, PE-2 and ATCC in the production of biomass, ethanol, glycerol and sugar consumption, as well as to evaluate the kinetic parameters by means of response surface methodology for mixing. From the biomass models generated, it was observed that the yeasts ATCC and MONA when in the presence of CAT-1 and PE-2 showed antagonisms. For the ethanol, the synergistic effect was verified for the mixture MONA/ATCC and CAT-1/PE-2 being that CAT-1 and PE-2 were the yeasts that strongly favored the ethanol production. It stands out yeast MONA due to having lower glycerol production, character desirable in the sugar and alcohol industry. Thus, it is clear that from the analysis employed it was possible to infer about the kinetic behavior of the yeasts in pure cultures as well as the effect of the interaction between them during the cultivation.

References

Albergaria, H., & Arneborg, N. (2016). Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes : role of physiological fitness and microbial interactions. Appl Microbiol Biotechnol, 100, 2035–2046. https://doi.org/10.1007/s00253-015-7255-0

Amorim, H. V, Oliveira, J. V. C., Buckeridge, M. S., & Goldman, G. H. (2011). Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol, 91, 1267–1275. https://doi.org/10.1007/s00253-011-3437-6

Bassi, A. P. G., Meneguello, L., Paraluppi, A. L., Sanches, B. C. P., & Ceccato-Antonini, S. R. (2018). Interaction of Saccharomyces cerevisiae–Lactobacillus fermentum–Dekkera bruxellensis and feedstock on fuel ethanol fermentation. Antonie van Leeuwenhoek, 111(9), 1661–1672. https://doi.org/10.1007/s10482-018-1056-2

Basso, L. C., Amorim, H. V. De, Oliveira, A. J. De, & Lopes, M. L. (2008). Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res, 8, 1155–1163. https://doi.org/10.1111/j.1567-1364.2008.00428.x

Basso, T. O., Gomes, F. S., Lopes, M. L., Amorim, H. V, Eggleston, G., & Basso, L. C. (2014). Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie van Leeuwenhoek, 105, 169–177. https://doi.org/10.1007/s10482-013-0063-6

Batistote, M., Cardoso, C. A. L., Ramos, D. D., & Ernandes, J. R. (2010). Desempenho de leveduras obtidas em indústrias de Mato Grosso do Sul na produção de etanol em mosto a base de cana de açúcar. Ciência e Natura, 32, 83–95.

Beckner, M., Ivey, M. L., & Phister, T. G. (2011). Microbial contamination of fuel ethanol fermentations. Letters in Applied Microbiology, 53, 387–394. https://doi.org/10.1111/j.1472-765X.2011.03124.x

Breitkreitz, M. C., Souza, A. M. de, & Poppi, R. J. (2014). A didactic chemometrics experiment for design of experiments (DOE): evaluation of experimental conditions in the spectrophotometric determination of Iron II with o -phenanthroline. A tutorial, part III . Química Nova, 37(3), 564–573. https://doi.org/10.5935/0100-4042.20140092

Brexó, R. P., & Sant’Ana, A. de S. (2017). Impact and signi fi cance of microbial contamination during fermentation for bioethanol production. Renewable and Sustainable Energy Reviews, 73, 423–434. https://doi.org/10.1016/j.rser.2017.01.151

Brexó, R. P., & Sant’Ana, A. de S. (2018). Critical Reviews in Biotechnology Microbial interactions during sugar cane must fermentation for bioethanol production : does quorum sensing play a role ? Critical Reviews in Biotechnology, 38, 231–244. https://doi.org/10.1080/07388551.2017.1332570

Brown, N. A., Castro, P. A. C., Figueiredo, B. C. P., Savoldi, M., Buckeridge, M. S., Lopes, M. L., Paullilo, S. C. L., Borges, E. P., Amorim, H. V, Golman, M. H. S., Diego, B., Malavazi, I., & Goldman, G. H. (2013). Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Res, 13, 277–290. https://doi.org/10.1111/1567-1364.12031

Ceccato-Antonini, S. R., & Covre, E. A. (2021). From baker’s yeast to genetically modified budding yeasts: the scientific evolution of bioethanol industry from sugarcane. FEMS Yeast Research, 20(8). https://doi.org/10.1093/femsyr/foaa065

Hair, J. F. J., Black, W. C., Babin, B. J., Anderson, R. E., & Tathan, R. L. (2009). Análise multivariada de dados (6a). Bookman.

Jouhten, P., Ponomarova, O., Gonzalez, R., & Patil, K. R. (2016). Saccharomyces cerevisiae metabolism in ecological context. FEMS Yeast Research, 16(7), 1–8. https://doi.org/10.1093/femsyr/fow080

Lopes, M. L., Paulillo, S. C. de L., Godoy, A., Cherubin, R. A., Lorenzi, M. S., Giometti, F. H. C., Bernardino, C. D., Amorim Neto, H. B., & Amorim, H. V. (2016). Ethanol production in Brazil : a bridge between science and industry. Brazilian Journal of Microbiology, 47, 64–76. https://doi.org/10.1016/j.bjm.2016.10.003

Lucena, B. T. L., Santos, B. M., Moreira, J. L. S., Moreira, A. P. B., Nunes, A. C., Azevedo, V., Miyoshi, A., Thompson, F. L., Antonio, M., & Junior, D. M. (2010). Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiology, 10, 298–306.

Parapouli, M., Vasileiadis, A., Afendra, A.-S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1–31. https://doi.org/10.3934/microbiol.2020001

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia de pesquisa científica. In Metodologia da Pesquisa Científica (1a). UFSM, NTE. http://www.elsevier.com/locate/scp

Rich, J. O., Leathers, T. D., Bischoff, K. M., Amber, M., Nunnally, M. S., Anderson, A. M., & Nunnally, M. S. (2015). Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation. Bioresource Technology, 196, 347–354. https://doi.org/10.1016/j.biortech.2015.07.071

Rodrigues, F., Ludovico, P., & Leão, C. (2005). Sugar Metabolism in Yeasts: an Overview of Aerobic and Anaerobic Glucose Catabolism. In: Biological and Ecophysiology of Yeasts (C. Péter, Gábor; Rosa (ed.)).

Santos, R. M., Nogueira, F. C. S., Brasil, A. A., Carvalho, P. C., Leprevost, F. V, Domont, G. B., & Eleutherio, E. C. A. (2017). Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2. Journal of Proteomics, 151, 114–121. https://doi.org/10.1016/j.jprot.2016.08.020

Seidel, E. J., Moreira Júnior, F. de J., Ansuj, A. P., & Noal, M. R. C. (2008). Comparação entre o método Ward e o método K-médias no agrupamento de produtores de leite. Ciência e Natura, 30, 7–15.

Silva, R. F., Santos, M. do S. M., Mueller, L. P., Cardoso, C. A. L., & Batistote, M. (2020). The composition of sacarine substrates for ethanol production and the fermentative capacity Saccharomyces cerevisiae Pedra-2. Research, Society and Development, 9(11), e44891110235. https://doi.org/10.33448/rsd-v9i11.10235

Souza, R. B., Santos, B. M., Souza, R. F. R., Silva, P. K. N., Lucena, B. T. L., & Morais Junior, M. A. (2012). The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation. J Ind Microbiol Biotechnol., 39, 1645–1650. https://doi.org/10.1007/s10295-012-1167-0

Tosin, C., & Andrietta, M. da G. S. (2015). Population dynamics of yeasts inhabiting bioethanol production with cell recycling. J. Inst. Brew., 121, 343–348. https://doi.org/10.1002/jib.237

Downloads

Published

28/02/2021

How to Cite

SANTOS, M. V. .; FREITAS, F. F. .; SOUZA, A. R. M. de; CASTIGLIONI, G. L. . Interaction between S. cerevisiae MONA, PE-2, CAT-1 and ATCC in fermentation sugar cane broth. Research, Society and Development, [S. l.], v. 10, n. 2, p. e54710212791, 2021. DOI: 10.33448/rsd-v10i2.12791. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12791. Acesso em: 24 apr. 2024.

Issue

Section

Engineerings