Sustainable and regional gastronomy: cassava leaves as a potential ingredient for gluten-free biscuits
DOI:
https://doi.org/10.33448/rsd-v10i3.13071Keywords:
Sustainable food; Cassava by-products; Ruch-protein leave; Celiac food; Cyanogenic compounds.Abstract
The addition of roots derivatives to bakery products may be a promising alternative to add value to these products. This study aimed to characterize and evaluate the effect of cassava leaves on the properties of gluten-free biscuits (GFB). The ingredients used were cassava flour, rice flour, cuí, tapioca flour, and 0 (F0), 3.69% (F1), 5.34% (F2), and 7.38% (F3) of cassava leaves (CCL). The results were evaluated by analysis of variance, followed by Scott-Knott test (p-value<0.05). The CCL presented 89.9% moisture, water activity of 0.98, and 2.75% protein; tryptophan was the limiting amino acid. No significant differences were observed between the F0-control and those made with the addition of CCL, which presented moisture and Aw below 3% and 0.30, and hardness between 45 to 60 N. The sensory acceptance scores were greater than 6, which indicates that it is possible to increase the added value of CCL in bakery products. The use of cassava leaves in biscuits showed good technological and sensory characteristics, making it possible to be an ingredient from regional by-products that can favor sustainable development, respect the concept of regionalization, and add income and employment.
References
AOAC. (2005). Official Methods of Analysis (K. Helrich (ed.); 15th editi). Association of Official Analytical Chemists.
Butz, P., Edenharder, R., Garcı́a, A. F., Fister, H., Merkel, C., & Tauscher, B. (2002). Changes in functional properties of vegetables induced by high pressure treatment. Food Research International, 35(2–3), 295–300. https://doi.org/10.1016/S0963-9969(01)00199-5
Cereda, M. P., & Vilpoux, O. F. (2013). Tecnologias, usos e potencialidades de tuberosas amiláceas latino americanas (3rd ed.). Fundação Cargill.
Chisté, R. C., Cohen, K. de O., Mathias, E. de A., & Oliveira, S. S. (2010). Quantificação de cianeto total nas etapas de processamento das farinhas de mandioca dos grupos seca e d’água. Acta Amazonica, 40(1), 221–226. https://doi.org/10.1590/S0044-59672010000100028
da Silva, T. F., & Conti-Silva, A. C. (2018). Potentiality of gluten-free chocolate cookies with added inulin/oligofructose: Chemical, physical and sensory characterization. LWT - Food Science and Technology, 90, 172–179. https://doi.org/10.1016/j.lwt.2017.12.031
Di Cairano, M., Galgano, F., Tolve, R., Caruso, M. C., & Condelli, N. (2018). Focus on gluten free biscuits: Ingredients and issues. Trends in Food Science & Technology, 81, 203–212. https://doi.org/10.1016/j.tifs.2018.09.006
Duta, D. E., & Culetu, A. (2015). Evaluation of rheological, physicochemical, thermal, mechanical and sensory properties of oat-based gluten free cookies. Journal of Food Engineering, 162, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.04.002
FAO/WHO, F. and A. O. of the U. N. and W. H. O. (1985). Energy and protein requirements (pp. 1–8). FAO/WHO.
FAOSTAT, F. and A. O. of the U. N. (2020). Production, crops (pp. 1–5). http://www.fao.org/faostat/en/#home/
Hagen, S. R., Augustin, J., Grings, E., & Tassinari, P. (1993). Precolumn phenylisothiocyanate derivatization and liquid chromatography of free amino acids in biological samples. Food Chemistry, 46(3), 319–323. https://doi.org/10.1016/0308-8146(93)90127-2
Hobbs, J. E. (2020). Food supply chains during the COVID-19 pandemic. Canadian Journal of Agricultural Economics, 68(2), 171–176. https://doi.org/10.1111/cjag.12237
Hoover, E. (2020). Native food systems impacted by COVID. Agriculture and Human Values. https://doi.org/10.1007/s10460-020-10089-7
Laborde, D., Martin, W., Swinnen, J., & Vos, R. (2020). COVID-19 risks to global food security. Science, 369(6503), 500–502. https://doi.org/10.1126/science.abc4765
Latif, S., & Müller, J. (2015). Potential of cassava leaves in human nutrition: A review. Trends in Food Science & Technology, 44(2), 147–158. https://doi.org/10.1016/j.tifs.2015.04.006
Lucas, B., & Sotelo, A. (1980). Effect of different alkalies, temperature, and hydrolysis times on tryptophan determination of pure proteins and of foods. Analytical Biochemistry, 109(1), 192–197. https://doi.org/10.1016/0003-2697(80)90028-7
Mancebo, C. M., Picón, J., & Gómez, M. (2015). Effect of flour properties on the quality characteristics of gluten free sugar-snap cookies. LWT - Food Science and Technology, 64(1), 264–269. https://doi.org/10.1016/j.lwt.2015.05.057
Manley, D. (2011). Manley’s technology of biscuits, crackers and cookie (4th Ed.). Woodhead Publishing Limited.
Meilgaard, M., Civille, G. V., & Carr, B. T. (2000). Sensory Evaluation Techniques (3rd Ed.). CRC Press.
Modesto Junior, E. N., Chisté, R. C., & Pena, R. da S. (2019). Oven drying and hot water cooking processes decrease HCN contents of cassava leaves. Food Research International, 119, 517–523. https://doi.org/10.1016/j.foodres.2019.01.029
Muggah, E. M., Duizer, L. M., & McSweeney, M. B. (2016). A comparison of sensory properties of artisanal style and industrially processed gluten free breads. International Journal of Gastronomy and Food Science, 3, 38–46. https://doi.org/10.1016/j.ijgfs.2016.01.001
Neves, E. C. A., Neves, D. A., Lobato, K. B. S., Nascimento, G. C., & Clerici, M. T. P. S. (2017). Technological aspects of processing off cassava derivatives. In C. Klein (Ed.), Handbook on cassava: production, potential uses and recent advances (1st Ed., p. 500). Nova Science Publishers.
Ngudi, D. D., Kuo, Y.-H., & Lambein, F. (2003). Cassava cyanogens and free amino acids in raw and cooked leaves. Food and Chemical Toxicology, 41(8), 1193–1197. https://doi.org/10.1016/S0278-6915(03)00111-X
Rodrigues, J. P. de M., Caliari, M., & Asquieri, E. R. (2011). Caracterização e análise sensorial de biscoitos de polvilho elaborados com diferentes níveis de farelo de mandioca. Ciência Rural, 41(12), 2196–2202. https://doi.org/10.1590/S0103-84782011001200025
Silva, D. A. Q., Wahanik, A. L., Azeredo, E. M. C., Schmiele, M., Chang, Y. K., & Clerici, M. T. P. S. (2015). Gluten-free cookie with potato starch and modified albumin: development, technology, nutrition and sensory evaluation. In R. T. Langdon (Ed.), Gluten-Free Diets: Food Sources, Role in Celiac Disease and Health Benefits (pp. 1–25). Nova Science Publishers.
Valitutti, F., Iorfida, D., Anania, C., Trovato, C., Montuori, M., Cucchiara, S., & Catassi, C. (2017). Cereal Consumption among Subjects with Celiac Disease: A Snapshot for Nutritional Considerations. Nutrients, 9(4), 396. https://doi.org/10.3390/nu9040396
White, J. A., Hart, R. J., & Fry, J. C. (1986). An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. Journal of Automatic
Chemistry, 8(4), 170–177. https://doi.org/10.1155/S1463924686000330
Witczak, M., Ziobro, R., Juszczak, L., & Korus, J. (2016). Starch and starch derivatives in gluten-free systems – A review. Journal of Cereal Science, 67, 46–57. https://doi.org/10.1016/j.jcs.2015.07.007
Wobeto, C., Corrêa, A. D., Abreu, C. M. P. de, & Santos, C. D. dos. (2004). Cianeto na farinha e folhas de mandioca (Manihot esculenta Crantz). Ciência e Agrotecnologia, 28(5), 1115–1118. https://doi.org/10.1590/S1413-70542004000500020
Yılmaz, V. A., & Koca, İ. (2020). Development of gluten-free corn bread enriched with anchovy flour using TOPSIS multi-criteria decision method. International Journal of Gastronomy and Food Science, 22, 100281. https://doi.org/10.1016/j.ijgfs.2020.100281
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Elisa Cristina Andrade Neves; Beatriz Andrade Moysés; Daniela Andrade Neves; Pedro Henrique Campelo; Maria Teresa Pedrosa Silva Clerici
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.