Sustainable and regional gastronomy: cassava leaves as a potential ingredient for gluten-free biscuits

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13071

Keywords:

Sustainable food; Cassava by-products; Ruch-protein leave; Celiac food; Cyanogenic compounds.

Abstract

The addition of roots derivatives to bakery products may be a promising alternative to add value to these products. This study aimed to characterize and evaluate the effect of cassava leaves on the properties of gluten-free biscuits (GFB). The ingredients used were cassava flour, rice flour, cuí, tapioca flour, and 0 (F0), 3.69% (F1), 5.34% (F2), and 7.38% (F3) of cassava leaves (CCL). The results were evaluated by analysis of variance, followed by Scott-Knott test (p-value<0.05). The CCL presented 89.9% moisture, water activity of 0.98, and 2.75% protein; tryptophan was the limiting amino acid. No significant differences were observed between the F0-control and those made with the addition of CCL, which presented moisture and Aw below 3% and 0.30, and hardness between 45 to 60 N. The sensory acceptance scores were greater than 6, which indicates that it is possible to increase the added value of CCL in bakery products. The use of cassava leaves in biscuits showed good technological and sensory characteristics, making it possible to be an ingredient from regional by-products that can favor sustainable development, respect the concept of regionalization, and add income and employment.

References

AOAC. (2005). Official Methods of Analysis (K. Helrich (ed.); 15th editi). Association of Official Analytical Chemists.

Butz, P., Edenharder, R., Garcı́a, A. F., Fister, H., Merkel, C., & Tauscher, B. (2002). Changes in functional properties of vegetables induced by high pressure treatment. Food Research International, 35(2–3), 295–300. https://doi.org/10.1016/S0963-9969(01)00199-5

Cereda, M. P., & Vilpoux, O. F. (2013). Tecnologias, usos e potencialidades de tuberosas amiláceas latino americanas (3rd ed.). Fundação Cargill.

Chisté, R. C., Cohen, K. de O., Mathias, E. de A., & Oliveira, S. S. (2010). Quantificação de cianeto total nas etapas de processamento das farinhas de mandioca dos grupos seca e d’água. Acta Amazonica, 40(1), 221–226. https://doi.org/10.1590/S0044-59672010000100028

da Silva, T. F., & Conti-Silva, A. C. (2018). Potentiality of gluten-free chocolate cookies with added inulin/oligofructose: Chemical, physical and sensory characterization. LWT - Food Science and Technology, 90, 172–179. https://doi.org/10.1016/j.lwt.2017.12.031

Di Cairano, M., Galgano, F., Tolve, R., Caruso, M. C., & Condelli, N. (2018). Focus on gluten free biscuits: Ingredients and issues. Trends in Food Science & Technology, 81, 203–212. https://doi.org/10.1016/j.tifs.2018.09.006

Duta, D. E., & Culetu, A. (2015). Evaluation of rheological, physicochemical, thermal, mechanical and sensory properties of oat-based gluten free cookies. Journal of Food Engineering, 162, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.04.002

FAO/WHO, F. and A. O. of the U. N. and W. H. O. (1985). Energy and protein requirements (pp. 1–8). FAO/WHO.

FAOSTAT, F. and A. O. of the U. N. (2020). Production, crops (pp. 1–5). http://www.fao.org/faostat/en/#home/

Hagen, S. R., Augustin, J., Grings, E., & Tassinari, P. (1993). Precolumn phenylisothiocyanate derivatization and liquid chromatography of free amino acids in biological samples. Food Chemistry, 46(3), 319–323. https://doi.org/10.1016/0308-8146(93)90127-2

Hobbs, J. E. (2020). Food supply chains during the COVID-19 pandemic. Canadian Journal of Agricultural Economics, 68(2), 171–176. https://doi.org/10.1111/cjag.12237

Hoover, E. (2020). Native food systems impacted by COVID. Agriculture and Human Values. https://doi.org/10.1007/s10460-020-10089-7

Laborde, D., Martin, W., Swinnen, J., & Vos, R. (2020). COVID-19 risks to global food security. Science, 369(6503), 500–502. https://doi.org/10.1126/science.abc4765

Latif, S., & Müller, J. (2015). Potential of cassava leaves in human nutrition: A review. Trends in Food Science & Technology, 44(2), 147–158. https://doi.org/10.1016/j.tifs.2015.04.006

Lucas, B., & Sotelo, A. (1980). Effect of different alkalies, temperature, and hydrolysis times on tryptophan determination of pure proteins and of foods. Analytical Biochemistry, 109(1), 192–197. https://doi.org/10.1016/0003-2697(80)90028-7

Mancebo, C. M., Picón, J., & Gómez, M. (2015). Effect of flour properties on the quality characteristics of gluten free sugar-snap cookies. LWT - Food Science and Technology, 64(1), 264–269. https://doi.org/10.1016/j.lwt.2015.05.057

Manley, D. (2011). Manley’s technology of biscuits, crackers and cookie (4th Ed.). Woodhead Publishing Limited.

Meilgaard, M., Civille, G. V., & Carr, B. T. (2000). Sensory Evaluation Techniques (3rd Ed.). CRC Press.

Modesto Junior, E. N., Chisté, R. C., & Pena, R. da S. (2019). Oven drying and hot water cooking processes decrease HCN contents of cassava leaves. Food Research International, 119, 517–523. https://doi.org/10.1016/j.foodres.2019.01.029

Muggah, E. M., Duizer, L. M., & McSweeney, M. B. (2016). A comparison of sensory properties of artisanal style and industrially processed gluten free breads. International Journal of Gastronomy and Food Science, 3, 38–46. https://doi.org/10.1016/j.ijgfs.2016.01.001

Neves, E. C. A., Neves, D. A., Lobato, K. B. S., Nascimento, G. C., & Clerici, M. T. P. S. (2017). Technological aspects of processing off cassava derivatives. In C. Klein (Ed.), Handbook on cassava: production, potential uses and recent advances (1st Ed., p. 500). Nova Science Publishers.

Ngudi, D. D., Kuo, Y.-H., & Lambein, F. (2003). Cassava cyanogens and free amino acids in raw and cooked leaves. Food and Chemical Toxicology, 41(8), 1193–1197. https://doi.org/10.1016/S0278-6915(03)00111-X

Rodrigues, J. P. de M., Caliari, M., & Asquieri, E. R. (2011). Caracterização e análise sensorial de biscoitos de polvilho elaborados com diferentes níveis de farelo de mandioca. Ciência Rural, 41(12), 2196–2202. https://doi.org/10.1590/S0103-84782011001200025

Silva, D. A. Q., Wahanik, A. L., Azeredo, E. M. C., Schmiele, M., Chang, Y. K., & Clerici, M. T. P. S. (2015). Gluten-free cookie with potato starch and modified albumin: development, technology, nutrition and sensory evaluation. In R. T. Langdon (Ed.), Gluten-Free Diets: Food Sources, Role in Celiac Disease and Health Benefits (pp. 1–25). Nova Science Publishers.

Valitutti, F., Iorfida, D., Anania, C., Trovato, C., Montuori, M., Cucchiara, S., & Catassi, C. (2017). Cereal Consumption among Subjects with Celiac Disease: A Snapshot for Nutritional Considerations. Nutrients, 9(4), 396. https://doi.org/10.3390/nu9040396

White, J. A., Hart, R. J., & Fry, J. C. (1986). An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. Journal of Automatic

Chemistry, 8(4), 170–177. https://doi.org/10.1155/S1463924686000330

Witczak, M., Ziobro, R., Juszczak, L., & Korus, J. (2016). Starch and starch derivatives in gluten-free systems – A review. Journal of Cereal Science, 67, 46–57. https://doi.org/10.1016/j.jcs.2015.07.007

Wobeto, C., Corrêa, A. D., Abreu, C. M. P. de, & Santos, C. D. dos. (2004). Cianeto na farinha e folhas de mandioca (Manihot esculenta Crantz). Ciência e Agrotecnologia, 28(5), 1115–1118. https://doi.org/10.1590/S1413-70542004000500020

Yılmaz, V. A., & Koca, İ. (2020). Development of gluten-free corn bread enriched with anchovy flour using TOPSIS multi-criteria decision method. International Journal of Gastronomy and Food Science, 22, 100281. https://doi.org/10.1016/j.ijgfs.2020.100281

Downloads

Published

08/03/2021

How to Cite

NEVES, E. C. A.; MOYSÉS, B. A.; NEVES, D. A.; CAMPELO, P. H. .; CLERICI, M. T. P. S. Sustainable and regional gastronomy: cassava leaves as a potential ingredient for gluten-free biscuits. Research, Society and Development, [S. l.], v. 10, n. 3, p. e12010313071, 2021. DOI: 10.33448/rsd-v10i3.13071. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13071. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences