Production of human milk fat substitute by enzyme interesterification: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13469

Keywords:

Structured lipid; Infant formula; Triacylglycerols (TAG).

Abstract

Human milk is considered the main source of nutrients and energy for babies from a nutritional, immunological, and food security point of view. The best way to ensure the supply of the necessary nutrients for the infant is through breast milk, however, when the practice of breastfeeding is impossible, the use of Infant Formula appears as an alternative for the baby's feeding. The Interesterification process of mixtures between solid fats and vegetable oils can form products with excellent characteristics called structured lipids, which can be used as substitutes for human milk fat in infant formulas. The interesterification enzymatic offers the advantage of greater control over the positional distribution of fatty acids in the final product, due to the selectivity and regiospecificity of lipases in fatty acids. This work brought together recent work on the fat substitute for the production of human milk by interesterification enzyme. Through the search for references, it can be noted that several groups of researchers in the world work with tests to improve and adjust the interesterification technique and the use of the best enzyme for the production of substitutes from different natural sources of oils and fats. However, there are still not many registrations of patented products. In this way, more research must be developed to arrive at a substitute product with the best characteristics for it to be submitted for a patent.

References

Akoh, C. C. & Kim, B. H. (2008). Structured lipids. In: C. C. Akoh, D. B. Min, editors. Food lipids—Chemistry, nutrition, and biotechnology. (3a ed.), Boca Raton: CRC Press. 841– 864.

Brys, J., Flores, L. F. V., Gorska, A., Wirkowska-Wojdyla, M., Ostrowska-Ligeza, E. & Brys, A. (2017). Use of GC and PDSC methods to characterize human milk fat substitutes obtained from lard and milk thistle oil mixtures. Journal of Thermal Analysis and Calorimetry, 130(1), 319.

Brys, J., 1 Flores, l. F. V., Górska, A., Ostrowska–Ligwza, E., Brys, A., Niemiec, T. & Koczon, P. (2019). The Synthesis Followed by Spectral and Calorimetric Evaluation of Stability of Human Milk Fat Substitutes Obtained from Thistle Milk and Lard. International Journal of Analytical Chemistry.

Cai, H., Yang, L., Zhao, M., Fu, G., Lai, J. & Feng, F. (2015) Immobilization, Regiospecificity Characterization and Application of Aspergillus oryzae Lipase in the Enzymatic Synthesis of the Structured Lipid 1,3-Dioleoyl-2-Palmitoylglycerol. PLoS One, 10(7).

Costa, A.G. V. & Sabarense, C. M. (2010). Modulação e composição de ácidos graxos do leite humano. Rev. Nutr., Campinas, 23(3), 445-457.

De Paula, A.V. Nunes, G.F.M., De Castro, H. F. & Santos, J. C. Dos. (2018). Performance of packed bed reactor on the enzymatic interesterification of milk fat with soybean oil to yield structure lipids. International Dairy Journal, 86. 1-8.

Djajasoepena, S., Suprijana, O., Saadah, D. R., Pratomo, U. & Puspitasari, S. (2015). Production of human milk Fat Replacement Rich of 1,3-dioleoyl-2-palmitoilglycerol From Enzymatic Interesterification Tripalmitin, Ethyl Oleate And Mixture of VCO, Soybean Oil And Fish Oil. Procedia chemistry, 16, 384-391.

Forsyth, S., Gautier, S., & Salem, N. (2017). A importância do DHA e ARA dietéticos no início da vida: Uma perspectiva de saúde pública. Proceedings of the Nutrition Society, 76.(4), 568-573.

Ghosh, M., Sengupta, A., Bhattacharyya, DK et al. (2016). Preparação de análogo da gordura do leite humano por reação de interesterificação enzimática utilizando estearina de palma e óleo de peixe. J Food Sci Technol, 53, 2017–2024.

He, Y., Qiu, C., Guo, Z., Huang, J., Wang, M. & Chen, B. (2017). Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils from Nannochloropsis oculata and Isochrysis galbana. Bioresource technology, 238,129-138.

He, Y., Li J., Guo, Z. & Chen, B. (2018). Synthesis of novel medium- -long-medium type structured lipids from microalgae oil via two-step enzymatic reactions. Process Biochem, 68, 108.

Kim, B.& Akoh, C. (2015). Recent Research Trends on the Enzymatic Synthesis of Structured Lipids. Journal Of Food Science, 80(8), C1713-C1724.

Korma, S.A., Zou, X., Ali A.H., Abed, S.M., Jin, Q. & Wang, X. (2018). Preparation of structured lipids enriched with medium- and long-chain triacylglycerols by enzymatic interesterification for infant formula. Food and Bioproducts Processing, 107,121-130.

Kotani, K., Yamamoto, Y. & Hara, S.K. (2015). Enzymatic Preparation of Human Milk Fat Substitutes and Their Oxidation Stability. Journal of Oleo Science, 64(3), 275.

Kus, M. M. M., Silva, S. A. da, Aued-Pimentel S. & Mancini-Filho, J. (2011). Nutrition facts of infant formulas sold in São Paulo state: assessment of fat and fatty acid contents. Rev. Nutr., Campinas, 24(2), 209-218.

Lee, N., Oh, S., Kwon, D. & Yoon, S. (2015). Production of 1, 3-dioleoyl-2-palmitoyl glycerol as a human milk fat substitute using enzymatic interesterification of natural fats and oils. Food Science and Biotechnology, 24(2), 433-437.

Nejrup, R. G. & Licht, T. R. (2017). Hellgren L.I. Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice. Sci Rep. 7.

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Silva, R. C. da & Gioielli, L. A. (2009). Lipídios estruturados: alternativa para a produção de sucedâneos da gordura do leite humano. Quim. Nova, 32 (5), 1253-1261.

Silva, R. C. da & Gioielli, L. A. (2006). Propriedades físicas de lipídios estruturados obtidos a partir de banha e óleo de soja. Brazilian Journal of Pharmaceutical Sciences. 42(2).

Silva, R. C., Soares, F. A. S.de M., Hazzan, M., Capacla, I. R., Gonçalves, M. I. A. & Gioielli, L. A. (2012). Continuous enzymatic interesterification of lard and soybean oil blend: Effects of different flow rates on physical properties and acyl migration. Journal of Molecular Catalysis B: Enzymatic, 76, 23-28.

Soumanou, M. M., Périgon, M. & Villeneuve, E. P. (2013). Lipase‐catalyzed interesterification reactions for human milk fat substitutes production: A review. European Journal of Lipid Science and Technology, 15, 270-285.

Tecelão, C., Perrier, V., Dubreucq, E. & Ferreira‐Dias, S. (2019). Production of Human Milk Fat Substitutes by Interesterification of Tripalmitin with Ethyl Oleate Catalyzed by Candida parapsilosis Lipase/Acyltransferase. Journal of the American Oil Chemists' Society, 96 (7), 777-787.

Zhao, J. F., Lin, J. P., Yang, L. R. & Wu, M. B. (2019). Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol. Applied Biochemistry and Biotechnology, 188 (3), 677-689.

Wang, J., Liu X., Wang, XD, Dong, T., Zhao, Xing-Yu, Zhu, D., Mei, Yi-Yuan, & Wu, Guo-Hua. (2016). Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase. Bioresource Technology, 220, 132-141.

Wang, Z., Du, W., Dai, L. & Liu, D. (2016). Study on lipozyme TL IM-catalyzed esterification of oleic acid and glycerol for 1,3-diolein preparation. J MolCatal, B Enzym.127,11–17.

Wang, Z., Liu, L., Liu, L., Liu, T., Li, C. & Sun, L. (2019). 1,3-Dioleoyl-2-palmitoylglycerol-rich triacylglycerol characterization by three processing methods. International Journal of Food Properties, 22(1),1156–1171.

Wei, W., Jin, Q. & Wang, X. (2019). Human milk fat substitutes: Past achievements and current trends Progress. Lipid Research, 74, 69-86.

Wei, W., Fengy, Y., Zhang, X., Cao, X. & Feng, F. (2015). Synthesis of structured lipid 1,3-dioleoyl-2-palmitoylglycerol in both solvent and solvent-free system. LWT - Food Science and Technology. 60(2), 1187-1194.

Yuan, T., Wei, W., Wang, X. & Jin, Q. (2020). Biosynthesis of structured lipids enriched with medium and long-chain triacylglycerols for human milk fat substitute. Lebensmittel-Wissenschaft + [ie und] Technologie.128.

Yuan, T., Zhang, H., Wang, X., Yu, R., Zhou, Q., Wei, W., Wang, X. & Jin, Q. Triacylglycerol containing medium-chain fatty acid s (MCFA-TAG): The gap between human milk and infant formulas. International Dairy Journal. 99.

Zheng, M., Wang, S., Xiang, X., Shi, J., Huang, J., Deng, Q., Huang, F. & Xiao, J. (2017). Facile preparation of magnetic carbon nanotubes-immobilized lipase for highly efficient synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes. Food chemistry, 228,.476-483.

Zou, X., Jin, Q., Guo, Z., Xu, X. & Wang, X. (2016). Preparation and Characterization of Human Milk Fat Substitutes Based on Triacylglycerol Profiles. Journal of the American Oil Chemists' So

Published

19/03/2021

How to Cite

FERREIRA, G. C. A.; SILVA, J. M. da; SILVA, G. A. R. da .; PONHOZI, I. B. .; CASTRO, M. C. de; SOUZA, P. M. de .; CRUZ, V. H. M. da .; SANTOS JUNIOR, O. de O. . Production of human milk fat substitute by enzyme interesterification: a review. Research, Society and Development, [S. l.], v. 10, n. 3, p. e36210313469, 2021. DOI: 10.33448/rsd-v10i3.13469. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13469. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences