Productive performance, thermal and blood parameters of Japanese laying quails at different cage stocking densities

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13686

Keywords:

Animal Welfare; Erythrocytes; Stress; Total Leukocytes; Eggshell Quality; Immune system.

Abstract

This study aimed to evaluate the effects of different stocking densities on the performance, eggshell quality, surface body temperature and hematological parameters of Japanese laying quails based on physiological indicators of animal welfare. Two hundred and thirty seven-week-old Japanese quails were used in this experiment. The quails were completely randomized to four stocking densities: 112.2 (T1), 102 (T2), 93.5 (T3), and 86.31 (T4) cm²/quail and five replicates each. Hematological parameters were analyzed as a 4x4 factorial design (stocking density X time) over four periods of blood sampling (25, 50, 75, and 100 days). To obtain the body surface temperature (Ts, °C) three thermograms (head, core and shin) were captured from each repetition per plot (2 repetitions per experimental plot) every 25 days (25, 50, 75, and 100 days). Feed intake, feed conversion per egg mass, feed conversion per dozen eggs, egg mass, egg production rate, and eggshell quality-related variables were not affected by treatments. However, egg weight (p = 0.023) and core temperature (p = 0.003) were influenced by different cage stocking densities. The heterophil/lymphocyte ratio increased (p = 0.01) with increasing time and stocking density. The mean corpuscular volume (p = 0.0001) as well as the total leukocyte count (p = 0.001) increased until the third blood sampling period (75 days) and then decreased in the last period. Different stocking densities do not interfere with the performance and eggshell quality of Japanese quails. However, the hematological parameters and head temperature are affected by different cage stocking densities and time.

References

Albino, L. F. T., & Barreto, S. L. T. (2003). Creation of quails for the production of eggs and meat. Learn Easy, 268p.

Araújo, W. A. G. & Albino, L. F. T. (2011). Commercial incubation. Transworld Research Network, 105 –138.

Albino, L. F. T., Carvalho, B. R., Maia, R. C. & Barros, V. R. S. M. (2014). Laying hens Raising and feeding. Ed. Learn Easy, 376p.

Bedánová, I., Voslarova, E., Chloupek, P., Pistekova, V., Suchy, P., Blahova, J., Dobsikova, R. & Vecerek, V. (2007). Stress in broilers resulting from shackling. Poultry Science, 86(0), 1065-1069. 10.1093/ps/86.6.1065

Bounous, D. I., & Stedman, N. (2000). Normal avian hematology: chicken and turkey. In: Feldman, B. F., Zinkl, J. G., Jain, N. C. Schalm's Veterinary Hematology. (5a ed.), Lippincott Williams & Wilkins, 1147-1154.

Borges, S. A. (2001). Electrolyte balance and its interrelation with acid-base balance in broilers subjected to heat stress. Thesis (Doctorate in Zootechnics) - Postgraduate Course in Zootechnics, Universidade Estadual Paulista. 97 p.

Calefi, A. S., Honda, B. T. B., Costola-de-Souza, C., Siqueira, A. de, Namazu, L. B., Quinteiro-Filho, W. M., Fonseca, J. G. da S., Aloia, T. P. A., Piantino-Ferreira, A. J. & Palermo-Neto, J. (2014). Effects of long-term heat stress in an experimental model of avian necrotic enteritis. Poultry Science, 93(6), 1344–1353. 10.3382 / ps.2013-03829

Campbell, T. W. (2004). Clinical Chemistry of Birds. In: Thrall, M.A. Veterinary Hematology and Clinical Chemistry, 479-492.

Castilho, V. A. R., Garcia, R. G., Lima, N. D. S., Nunes, K. C., Caldara, F. R., Nääs, I. A, Barreto, B. & Jacob, F. G. (2015). Welfare of laying hens in different densities of housing. Brazilian Journal of Biosystems Engineering, 9(2), 122-131. http://dx.doi.org/10.18011/bioeng2015v9n2p122-131

Coles, E.H. (1984). Veterinary Clinical Pathology. (3a ed.), Ed Manole, 566p.

Dahlke, F., Gonzales, E., Gadelha, A. C., Maiorka, A., Borges, S. A., Rosa, P. S., Faria Filho, D. E. & Furlan, R. L. (2005). Warping, hormone levels of triiodothyronine and thyroxine and body temperature of broilers of different genotypes reared under different temperature conditions. Rural Science, 35(3), 664-670. http://dx.doi.org/10.1590/S0103-84782005000300029

Dantzer, R. & Kelly, K. W. (1989). Stress and immunity: an integral view of relationships between the brain and imune system. Life Sciences, 44(26), 1995–2008. 10.1016 / 0024-3205 (89) 90345-7

Dhabhar, F. S. (2002). A hassle a day may keep the doctor away: stress and the augmentation of immune function. Integrative and Comparative Biology, 42(3), 556–564. https://doi.org/10.1093/icb/42.3.556

Dhabhar, F. S. (2009). Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation, 16(5), 300-317. 10.1159 / 000216188

Drabkin, D. (1948). The standardization of hemoglobin measurement. American Journal of Medical Science, 215(1), 110-111. 10.1097 / 00000441-194801000-00017

Davis, A. K., Maney, D. L. & Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology, 22(0), 760-772. 10.1111/j.1365-2435.2008.01467.x

El-Kholy, M. S., El-Hinestúpido, M. M., Alagai, M., El-Hack, M. E. A. & El-Sayed, S. A. E. A. E. (2017). Dietary Supplementation of Chromium Can Alleviate Negative Impacts of Heat Stress on Performance, Carcass Yield, and Some Blood Hematology and Chemistry Indices of Growing Japanese Quail. Biological trace element research, 179(1), 148-157. 10.1007 / s12011-017-0936-z

Fahey, A. G. & Cheng, H. W. (2008). Group Size and Density Effects on Physical Indices and Cell-Mediated Immunity in Two Genetic Lines of White Leghorn Layers. Poultry Science, 87(12), 2500-2504. https://doi.org/10.3382/ps.2007-00407

Gross, W. B. & Siegel, H. S. (1983). Evaluation of the heterophil/ lymphocyte ratio as a measure of stress in chickens. Avian Diseases, 27(4), 972–979. 10.2307 / 1590198

Guimarães, M. C. C., Furtado, D.A., Nascimento, J. W. B. do, Tota, L. C. A., Silva, C. M. & Lopes, K. B. P. (2014). Effect of the season on the productive performance of quails in the semi-arid region of Paraíba. Brazilian Journal of Agricultural and Environmental Engineering, 18(2), 231–237. https://doi.org/10.1590/S1415-43662014000200015

Hillman, P. E., Scott, N. R. & Van Thienhoven, A. (1982). Vasomotion in chicken foot: dual innervation of arteriovenous anastomoses. Animal Journal Physiology, 242(5), 582- 590. 10.1152 / ajpregu.1982.242.5.R582

Jain, N.C. (1993). Comparative hematologic features of some avian and mamalian species. In: JAIN, N.C. Essencials of veterinary haematology. Philadelphia: Lea & Febiger, 54-71.

Junqueira, L. C. & Carneiro, J. (2004). Blood cells. In: Basic Histology. (10th ed.), Guanabara Koogan. Chapter 12. 223-237p.

Kodaira, V., Pereira, D. F, Soares, N. M. & Bueno, L. G. F. (2015). Blood glucose concentration and heterophilic relationship: lymphocyte can be used as heat stress indicators for laying birds? Brazilian Journal of Biosystems Engineering, 9(2), 182-190. http://dx.doi.org/10.18011/bioeng2015v9n2p182-190

Laganá, C., Ribeiro, A. M. L., Gonzalez, F. H. D., Almeida Lacerda, L., Terra, S. R. & Barbosa, P. R. (2005). Supplementation of organic vitamins and minerals in the biochemical and hematological parameters of broilers in heat stress. Animal Industry Bulletin, 62(2) 157-165.

Leandro, N. S. M., Vieira, N. S., Matos, M. S., Café, M. B., Stringhini, J. H. & Santos, D. A. (2005). Productive Performance of Japanese Quails (Coturnix coturnix japonica) Subject to Different Densities and Types of Beak. Acta Scientiarum Animal Sciences, 27(1), 129-135. 10.4025/actascianimsci.v27i1.1263

Lima, H. J. D, Barreto, S. L. T, Valeriano, M. H, Vieira, D. V. G. & Costa, S. L. (2012). Japanese quail housing density in the initial laying stage. Global Science and Technology, 5(2), 186-193.

Lopes, I. R. V., Fuentes, M. F. F., Freitas, E. R., Soares, M. B. & Ribeiro, P. S. (2006). Effect of housing density and level of metabolizable energy of the diet on the zootechnical performance and characteristics of Japanese quail eggs. Agronomic Science, 37(3), 369-375.

Matteri, R. L., Carroll, J. A. & Dyer, C. J. (2000). Neuroendocrine responses to stress. In: Moberg, G. P., Mench, J. A. The biology of animal stress. Oxon: CAB International. 43-76.

Nordstrom, J. O. & Ousterhout, L. E. (1982). Estimation of shell weight and shell thickness from egg specific gravity and egg weight. Poultry Science, 61(10), 1991-1995. https://doi.org/10.3382/ps.0611991

On Aşila, E. E. & Aksoy, F. T. (2005).Stress parameters and immune response of layers under different cage floor and density conditions. Livestock Production Science, 95(3), 255-263. 10.1016 / j.livprodsci.2005.01.006

Pereira, D. F. Vitorasso, G., Oliveira, S. C., Kakimoto, S. K., Togashi, C. K. & Soares, N. M. (2008). Correlations between thermal environment and egg quality of two layer commercial strains. Brazilian Journal of Poultry Science, 10(2), 81-88. http://dx.doi.org/10.1590/S1516-635X2008000200002

Porto, M. L., Givisiez, P. E. N., Saraiva, E. P., Costa, F. G. P., Moreira Filho, A. L. B., Andrade, M. F. S., Brandão, P. A. & Guerra, R. R. (2015). Glutamic Acid Improves Body Weight Gain and Intestinal Morphology of Broiler ChickensSubmitted to Heat Stress. Brazilian Journal of Poultry Science, 17(3), 355-362. https://doi.org/10.1590/1516-635x1703355-362

Quinteiro-Filho, W. M., Ribeiro, A., Ferraz-de-Paula, V., Pinheiro, M. L., Sakai, M., Sa, L. R., Ferreira, A. J. & Palermo-Neto, J. (2010). Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Sciece, 89(9), 1905–1914. 10.3382 / ps.2010-00812

Rauw, W. M. (2012). Immune response from a resource allocation perspective. Frontiers in Genetics, 3(0), 1-14. https://doi.org/10.3389/fgene.2012.00267

Richards, S. A. (1971). The significance of changes in the temperature of the skin and body core of the chicken in the regulation of heat loss. The Journal of Physiology, 216(1), 1-10. 10.1113 / jphysiol.1971.sp009505

Rosa, G. A., Sorbello, L. A., Dittrich, R. L., Moraes, M. T. T. & Oliveira, E. G. (2011). Hematological profile of Japanese quails (Coturnix japonica) under thermal stress. Rural Science, 41(9), 1-6.

Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., Saraiva, A., Teixeira, M. V., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. T., & Brito, C. O. (2017). Brazilian tables for poultry and swine: food composition and nutritional requirements. 4a edição. Viçosa, MG: Departamento de Zootecnia, Universidade Federal de Viçosa, 488p.

Sarica, M., Boga, S. & Yamak, U. S. (2008). The effects of space allowance on egg yield, egg quality and plumage condition of laying hens in battery cages. Czech Journal Animal Science, 53(8), 346–353. 10.17221 / 349-CJAS

SAS – Statistic Alanalysis System: Realease 9.1.3 (software). Cary: Sas Institute, 2009. 620 p.

Scanes, C. G. & Christensen, K. (2014). Comparison of meta-analysis of the hematological parameters of commercial and indigenous poultry to wild birds: implications to domestication and development of commercial breeds/lines. Journal Veterinary Science Animal Health, 1: 6-13. 10.5897 / JVMAH

Scanes, C. G. (2016). Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poultry Science, 95(9), 2208–2215. https://doi.org/10.3382/ps/pew137

Schmidt, E. M. S., locatelli-dittrich, R., Santin, E. & Paulillo, A. C. (2007). Clinical pathology in poultry: a tool to monitor poultry health - review. Archives of Veterinary Science, 12(3), 09-20. http://dx.doi.org/10.5380/avs.v12i3.10906

Shini, S., Kaise, P., Shini, A. & Bryden, W. L. (2008). Differential alterations in ultrastructural morphology of chicken heterophils and lymphocytes induced by corticosterone and lipopolysaccharide. Veterinary Immunology and Immunopathology, 122(1-2), 83-93. 10.1016 / j.vetimm.2007.10.009

Shini, S., Huff, G. R., Shini, A. & Kaiser, P. (2010). Understanding stress-induced immunosuppression: Exploration of cytokine and chemokine gene profiles in chicken peripheral leukocytes. Poultry Science, 89(4), 841–851. https://doi.org/10.3382/ps.2009-00483

Silva, R. M., Furlan, A. C., Ton, A. P. S., Martins, E. N., Scherer, C., Murakami, A. E. (2009). Nutritional requirements for calcium and phosphorus in growing cutting quails. Revista Brasileira de Zootecnia, 38(8), p.1509-1517.

Soares, D. F., Pizzolante, C. C, Duarte, K. M. R, Moraes, J. E, Budiño, F. E. L, Sores, W. V. B. & Kakimoto, S. K. (2018). Welfare indicators for laying Japanese quails caged at different densities. Annals of the Brazilian Academy of Sciences, 90(4), 3791-3797. https://doi.org/10.1590/0001-3765201820180276

Soleimani, A. F., Zulkifli, I., Omar, A. R. & Raha, A. R. (2011). Physiological responses of 3 chicken breeds to acute heat stress. Poultry Science, 90(7), 1435-1440. 10.3382 / ps.2011-01381

Souza Júnior, J. B. F., Queiroz, J. P. A. F., Domingos, H. G. T., Torquato, J. L., Sá Filho, G. F. & Costa, L. L. M. (2013). Thermographic evaluation of Japanese quails (Coturnix coturnix japonica). Journal of Animal Behaviour and Biometeorology, 1(2), 61-64. 10.14269/2318-1265.v01n02a05

Souza, K. M. R., Carrijo, A. S., Allaman, I. B., Fascina, V. B., Mauad, J. R. C. & Suzuki, F. M. (2010). Alternative methods of food restriction in forced laying of commercial laying hens. Revista Brasileira Zootecnia, 39: 356-362.

Thrall, M. A., Baker, D. C., Campbell, T. W., Denicola, D., Fettman, M. J., Lassen, E. D., Rebar, A. & Weiser, G. (2006). Hematology and veterinary clinical biochemistry. Scientific review José Jurandir Fagliari, translation José Jurandir Fagliari, Diogo Scuta Fagliari, Diogo Scuta Fagliari. São Paulo, Roca, 581.

Vercese, F., Garcia, E. A., Sartori, J. R., Silva, A. de P., Faitarone, A. B. G., Berto, D. A., Molino, A. B. & Pelícia, K. (2012). Performance and egg quality of Japanese quails submitted to cyclic heat stress. Brazilian Journal of Poultry Science, 14(1), 37-41. 10.1590 / S1516-635X2012000100007

Voigt, G. L. 2003. Hematological Techniques and Techniques for Veterinary Technicians. Zaragoza, Editorial ACRIBIA, 144p.

Wein, Y., Shira, E. B. & Friedman, A. (2017). Avoiding handling-induced stress in poultry: use of uniform parameters to accurately determine physiological stress. Poultry Science, 96(1), 65–73. 10.3382 / ps / pew245

Yahav, S. (2007). Thermal manipulation during the perinatal period-does it improve thermotolerance and performance of broiler chickens? Proceedings of the 19th Australian Poultry Science Symposium, Sydney, New South Wales, Australia, 12-14 February 2007. Poultry Research Foundation, Australian.

Downloads

Published

26/03/2021

How to Cite

BOURDON, V. de D. dos S.; SOUZA, R. G. .; OLIVEIRA, E. J. do N. .; VIEIRA, D. V. G. .; MORON, S. E. .; VAZ, R. M. G. V. .; FERREIRA, K. R. .; LIMA, L. B. D. de .; SILVA, G. M. da L. .; ALMEIDA, J. S. de .; STIVANIN, T. E. .; GUERRA, R. R. .; OLIVEIRA, T. R. de .; CRUZ, J. dos S. da .; COSTA, F. G. P. Productive performance, thermal and blood parameters of Japanese laying quails at different cage stocking densities . Research, Society and Development, [S. l.], v. 10, n. 3, p. e54410313686, 2021. DOI: 10.33448/rsd-v10i3.13686. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13686. Acesso em: 14 nov. 2024.

Issue

Section

Agrarian and Biological Sciences