Production of enzymatic complex from agro-industrial biomass and its application in combustible ethanol

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.13705

Keywords:

Ethanol; Residues; Enzyme complex; Lignocellulosic; Biomasses.

Abstract

Waste biomass and agro-industrial by-products, for production ethanol, will meet much of the great demand for this product. To reduce costs and optimize production, this study investigated solid-state fermentation (SSF) to obtain crude enzyme complex (CEC) from different agro-industrial biomasses (sugarcane bagasse, corn peel bran, rice straw bran and roasting and ground coffee residue) using cellulolytic fungi. The most promising CEC were evaluated in simultaneous hydrolysis and fermentation (SHF) for ethanol production by Saccharomyces cerevisiae in a culture broth containing sugarcane bagasse treated by steam explosion, and roast and ground coffee residue. In SSF with bioreactor volume of 0.25 L, containing 40 g of the biomass mixture and 40 g of sterile water with resuspended cells (1.0 x108 spores/g of solid medium) and temperature of 30±2 ºC, the strains Trichoderma reesei and Penicilium oxalicum provided the best enzyme activity. The CEC of T. reesei provided a concentration of 7.5 g L-1 of ethanol in a substrate containing treated sugarcane bagasse (60%) and roast and ground coffee residue (40%), under SHF conditions (pH 4.5, 35±2 °C, 48 h). The results obtained in this study show a promising alternative for correct disposal and use of residues and agro-industrial by-products by use in the production of enzymes and lignocellulosic ethanol.

References

Althuri, A. Gujjala & L. K. S., Rintu. B. (2017). Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production. Bioresource Technology. 245, 530–539.

Browning, B. L. (1967). Interscience Publishers, New York.

Buzzini, P. & Martini, A. (2002). Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments. Journal Applied Microbiology. 93, 1020-1025.

Cuevas, M., Sanchez, S., Garcia, J. F., Baeza, J., Parra, C., Freer, J. (2015). Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones. Renewable Energy. 74, 839–847.

Dashtban, M., Schraft, H., Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences. 6, 578-95.

El-Said, A., Saleem, A. (2008). Ecological and physiological studies on soil fungi at western region, Libya. Microbiology. 36, 1–9.

Fischer, J., Lopes, V. S., Coutinho Filho, U., Cardoso, V. L. (2017). Machine learning techniques applied to lignocellulosic ethanol in simultaneous hydrolysis and fermentation. Brazilian Journal of Chemical Engineering. 34, 53–63.

Fischer, J., Lopes, V. S., Galvão, C., Teodoro, J., Coutinho Filho, U., Cardoso, V. L. (2013). Utilization of Cheese Whey and Cellulosic Biomass for Production of Ethanol by Selected Fungi Strain from Brazilian Savannas. Chemical Engineering Transactions. 32, 1075–1080.

Fischer, J., Lopes, V. S., Queiroz, E. F., Coutinho Filho, U., Cardoso, V. L. (2014). Second generation ethanol production using crude enzyme complex produced by fungi collected in Brazilian Cerrado (Brazilian Savanna). Chemical Engineering Transactions. 38, 487–492.

Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry. 59, 257– 268.

Gu, H., Zhang & J., Bao, J. (2014). Inhibitor analysis and adaptative evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresource Technology. 157, 6–13.

Guidini, C. Z., Marquez, L. D. S., Silva, H. A., Resende, M. M., Cardoso, V. L., Ribeiro, E. J. (2014). Alcoholic Fermentation with Flocculant Saccharomyces cerevisiae in Fed-Batch Process. Applied Biochemistry and Biotechnology.172, 1623–1638.

Khare, S. K., Pandey, A., Larroche, C. (2015). Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochemical Engineering Journal. 102, 38–44.

Leduc, S., Starfelt, F., Dotzauer, E., Kindermann, G., McCallum I Obersteiner, M., Lundgren, J. (2010). Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. Energy. 35, 2709–2716.

Lever, M., Ho, G., Cord-Ruwisch, R. (2010). Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation. Bioresource Technology. 101:7083–7087.

Li, C., Li, D., Feng, J., Fan, X., Chen, S., Zhang, D., He, R. (2019). Duckweed (Lemna minor) is a novel natural inducer of cellulase production in Trichoderma reesei. Journal of Bioscience Bioengineering. 127, 486–491.

Liu, L., Jiao, J., Fang, B., Lv. A., Ming, Y., Li, M., Salam, N. (2020). Isolation of Clostridium from Yunnan-Tibet hot springs and description of Clostridium thermarum sp. nov. with lignocellulosic ethanol production. Systematic and Applied Microbiology. 43, 126-104.

Lopes, V. S., Fischer, J., Pinheiro, T. M. A., Cabral, B. V., Cardoso, V. L., Coutinho Filho, U. (2017). Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse. Renewable Energy. 109, 305–310.

Maarel, M. J. E. C., Veen, B, Uitdehaag, J. C. M., Leemhuis, H., Dijkhuizen, L. (2002). Properties and Applications of Starch-converting Enzymes of the α-amylase family. Journal Biotechnology. 94 137–155.

Nguyen, T. Y., Cai, C. M., Kumar, R., Wyman, C. E. (2017). Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proceedings of the National Academy of Sciences. 114, 11673–11678.

Öhgren, K., Bura, R., Lesnicki, G., Saddler, J., Zacchi, G. (2007). A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry. 42, 834–839.

Pereira, A. S. et al. (2018). Metodologia da pesquisa cientifica. [free e-book]. Santa Maria: UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=.

Robak, k., & Balcerek, M. (2020). Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiological Research. 240, 126-534.

Rocha, N. R. F. A., Barros, M. A., Fischer, J., Coutinho Filho, U., Cardoso, V. L. (2013). Ethanol production from agroindustrial biomass using a crude enzyme complex produced by Aspergillus niger. Renewable Energy. 57, 432–435.

Singhania, R. R., Patel, A. K., Soccol, C. R., Pandey, A. (2008). Recent advances in solid-state fermentation. Biochemical Engineering Journal. 44 13–8.

Sukumaran, R. K., Singhania, R. R., Mathew, G. M., Pandey, A. (2009). Cellulase production using biomass feed stock an its application in lignocelluloses saccharification for bio-ethanol production. Renewable Energy. 34, 421– 424.

Thomas, L., Larroche, C., Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal. 81, 146–161.

Wang, H., Zhai, L., Geng, A. (2020). Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. Journal of Bioscience Bioengineering. 129, 242–249.

Downloads

Published

04/06/2021

How to Cite

ARRUDA, A. G. .; EVANGELISTA, I. V. .; MENEZES, L. S. de .; FISCHER, J. .; CARDOSO, V. L. .; SANTOS, L. D. .; GUIDINI, C. Z. . Production of enzymatic complex from agro-industrial biomass and its application in combustible ethanol. Research, Society and Development, [S. l.], v. 10, n. 6, p. e40410613705, 2021. DOI: 10.33448/rsd-v10i6.13705. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13705. Acesso em: 24 jun. 2021.

Issue

Section

Exact and Earth Sciences