Conditioners for cultivation soybean tolerant to the water deficit in the Northeast Semi-arid




Climate change; Dryland production; Food security.


Soy is a crop of great expressiveness worldwide and Brazil is currently the largest producer and exporter of this crop, with territorial potential for expansion of its cultivation. In view of the forecasts made by the main governmental institutions (climate change, population increase, and the scarcity of water resources), ensuring food security for a growing population will require strategies and improvements aimed at increasing productivity. The objective was to identify attributes of the environment and soybean plants that make them tolerant to water deficit and enable increased production in semi-arid environments in northeastern Brazil. Given that most of the major soy producing countries are composed mostly of arid and semi-arid territories, and due to the current climate changes, there is a strong tendency that new areas may be becoming arid and semi-arid. The solutions to cope with the water deficit stress imposed on soybean in arid and semi-arid environments need to be related to physiological, morphological and genetic improvements to help cope with this stress. Root enlargement, increased efficiency in nitrogen fixation, control of stomatal conductance and the efficient use of water by the plant are some of the challenges that genetic engineering will have to address in order to develop a water deficit tolerant soybean variety. More studies that aim to find answers capable of solving the water deficit in soybean should be conducted.


Adesemoye, A. O. & Kloepper, J. W. (2009). Plant-microbes interactions in enhanced fertilizer use efficiency. Applied Microbiology and Biotechnology, 85, 1–12. DOI 10.1007/s00253-009-2196-0

Araujo, F. F. (2008). Inoculação de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodão. Ciência e Agrotecnologia, 32(2), 456-462. 10.1590/S1413-70542008000200017.

Battisti, R., Sentelhas, P. C., Boote K. J., Câmara, G. M. S., Farias, J. R. B. & Basso, C. J. (2017). Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. European Journal of Agronomy, 83, 1-14.

Benjamin, J. G. & Nielsen, D. C. (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research, 97(2/3), 248-253. 10.1016/J.FCR.2005.10.005

Bittencourt, F., Mantovani, E. C., Sediyama, G. C. & Santos, N. T. (2018). Determinação de funções de produtividade de algodão e soja em cultivo sequeiro no extremo oeste da Bahia. Revista Agrogeoambiental, 10(1), 67-81.

Catuchi, T. A., Vítolo, H. F., Bertolli, S. C. & Souza, G. M. (2011). Tolerance to water deficiency between two soybean cultivars: transgenic versus conventional. Ciência Rural, 31(3), 373-378.

Catuchi, T. A., Guidorizzi, F. V. C., Guidorizi, K. A., Barbosa, A. M. & Souza, G. M. (2012). Respostas fisiológicas de cultivares de soja à adubação potássica sob diferentes regimes hídricos. Pesquisa Agropecuária Brasileira, 47(4), 519-527.

Choudhary, D. K., Sharma, K. P. & Gaur, R. K. (2011). Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett, 33, 1905–1910. 10.1007/s10529-011-0662-0

Chilundo, M., Joel, A. Wesström, I., Brito, R. & Messing, I. (2018). Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agricultural Water Management, 199, 120-137.

Conab. (2020). Safra Brasileira de Grãos. Website da Companhia Nacional de Abastecimento - CONAB.

Cortes, P. M. & Sinclair, T. R. (1986). Water Relations of Field-Grown Soybean under Drought. Crop Science, 26(5), 993-998.

Desa (2017) - United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision. Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248.

Devi, K. N., Singh, L. N. K., Devi, T. S., Devi, H. N.; Singh, T. B.; Singh, K. N. & Singh, W. N. (2012). Response of Soybean [Glycine max (L.) Merrill] to Sources and Levels of Phosphorus. Journal of Agricultural Science, 4(6), 44-53. 10.5539/jas.v4n6p44

Dodd, I. C., Zinovkina N. Y., Safronova, V. I. & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. Annal of Applied Biology, 157, 361-379. 10.1111/j.1744-7348.2010.00439.x

Embrapa. (2019). História da Soja. Website da Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA.

Fao. (2019). ‘Climatesmart’ agriculture, policies, practices and finances for food security, adaptation andmitigation. Website da Organização para a Alimentação e Agriculturahttps – FAO. //

Fao. (2011). The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk. FAO, Rome and Earthscan.

He, J., Du, Y., Wang, T., Turner, N. C., Yang, R., Xi, Y. J. Y., Zhang, C., Cui, T. & Fang, X. Li, F. (2017). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drough. Agricultural Water Management, 179, 236-245.

Jongdee, B., Fukai, S. & Cooper, M. (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Research, 76, 153-163.

Jordan, W. R., Dugas, W. A. & Shouse, P. J. (1983). Strategies for crop improvement for drought prone regions. Agricultural Water Management, 7, 281-299.

Lemos, J. & Santiago, D. (2020). Instabilidade Temporal na Produção Agrícola Familiar de Sequeiro no Semiárido do Nordeste Brasileiro. Desenvolvimento Em Questão, 18(50), 186-200.

Kim, H., Cho, H. S., Pak, J. H., Kwon, T., Lee, J., Kim, D., Lee, D. H., Kim, C. & Chung, Y. (2018). Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean. Molecular and Cellular Biology, 41, 413-422. 10.14348/molcells.2018.2254

Ku, B. Y., Au-Yeung, W., Yung, Y., Li, M., Wen, C., Liu, X. & Lam, H. (2013). Drought stress and tolerance in soybean. In: Board, J.E. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. 10, 209-237. 10.5772/52945

Leite, M. A., Dias, F. A., Hernandes, F. B. T. & Oliveira J. N. (2019). Usos múltiplos da água. In: Dornfeld, C. B., Talamoni, A.C.B., Queiroz, T.V. O Jogo digital na sala de aula - Água, Ação E Reflexão: elaboração de jogo digital para a Educação Básica. 4, 44-57.

Manavalan, L. P., Guttikonda, S. K., Tran, L. P. & Nguyen H. T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology, 50(7), 1260-1276.

MDIC. (2020). Ministério do Desenvolvimento, Indústria e Comércio Exterior - Comex Vis/MDIC. Website do MDIC.

Mondani, F., Khani, K., Honarmand, S. J. & Saeidi, M. (2019). Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition. Agricultural Water Management, 213, 707-713.

Morison, J. I. L., Baker, N. R., Mullineaux, P. M. & Davies, W. J. (2008). Improving water use in crop production. Philosophical Transactions of the Royal Society Biological Sciences, 363, 639-658. 10.1098/rstb.2007.2175

Moura, A. R., Nogueira, R. J. M. C., Silva, J. A. A. & Lima, T. V. (2016). Water relations and organic solutes in young plants of Jatropha curcas L. under diferente water regimes. Ciência Florestal, 26(2), 345-354.

Mutava, R. N., Prince, S. J. K., Syed, N. H., Song, L., Valliyodan, B., Chen, W. & Nguyen, H. T. (2015). Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry, 86, 109-120.

NEPOMUCENO, A. L. et al. Tolerância à seca em plantas. Biotecnologia Ciência e Desenvolvimento, 23, 12-18, 2001.

Oya, C., Schaefer, F., Skalidou, D., McCosker, C., & Langer, L. (2017). Effects of certification schemes for agricultural production on socio‐economic outcomes in low‐and middle‐income countries: a systematic review. Campbell Systematic Reviews, 13(1), 1-346. 10.4073/csr.2017.3.

Pandey, R. K., Herrera, W. A. T. & Pendleton, J. W. (1984). Drought response of grain legumes under irrigation gradient. III. Plant growth. Agronomy Journal, 76, 557-560.

Passioura, J. B. (1983). Roots and drought resistance. Agricultural Water Management, 7, 265-280.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM

Prado, R. M. (2018). Nutrição de plantas. UNESP.

Prado, E. E., Hiromoto, D. M., Godinho, V. P. C., Utumi, M. M. & Ramalho, A. R. (2001). Adaptability and stability of soybean cultivars in five planting seasons in Rondônia cerrado. Pesquisa Agropecuária Brasileira, 36(4), 625-635.

Purcell, L. C. & King, C. A. (1996). Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean. Journal of Plant Nutrition, 19, 969-993.

Ragab, R. & Prudhomme, C. (2002). Climate Change and Water Resources Management in Arid and Semi-arid Regions: Prospective and Challenges for the 21st Century. Biosystems Engineering, 81(1), 3-34.

Ramos, L. A., Nolla, A., Korndörfer, G. H., Pereira, H. S. & Camargo, M. S. (2006). Reactivity of soil acidity correctives and conditioners in lysimeters. Revista Brasileira de Ciência do Solo, 30, 849-857.

Ruzzi, M. & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124-134.

Sadok, W. & Sinclair, T. R. (2011). Crops Yield Increase Under Water-Limited Conditions: Review of Recent Physiological Advances for Soybean Genetic Improvement. Advances in Agronomy, 113, 325-349.

Rouhallah, S., Masoud, A., Abbas, S. & Khalil, T. (2010). Pyoverdine production in Pseudomonas fluorescens UTPF5 and its association with suppression of common bean damping off caused by Rhizoctonia solani (Kuhn). Journal of Plant Protection Research, 50, 72-78.

Sharifi, R. & Ryu, C. M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany, 122(3), 349-358. 10.1093/aob/mcy108

Sinclair, T. R. & Muchow, R. C. (2001). System analysis of plant traits to increase grain yield on limited water supplies. Agronomy Journal, 93(2), 263-270.

Sinclair, T. R., Purcell, L. C., King, C. A., Sneller, C. H., Chen, P. & Vadez, V. (2017). Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Research, 101, 68-71.

Sinclair, T. R. Messina, C. D. Beatty, A. & Samples, M. (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal, 102(2), 475-482.

Sivakumar, M. V. K., Das, H. P. & Brunini, O. (2005). Impacts of Present and Future Climate Variability and Change on Agriculture and Forestry in the Arid and Semi-Arid Tropics. Climatic Change, 70(1/2), 31-72.

Soratto, R. P. & Crusciol, C. A. C. (2008). Nutrition and grain yield of black oat as affected by surface application of lime and phosphogypsum at the establishment of no-tillage system. Revista Brasileira de Ciência do Solo, 32, 715-725.

Souza, G. M., Catuchi, T. A., Bertolli, S. C. & Soratto, R. P. (2013). Soybean under Water Deficit: Physiological and Yield Responses. In: Board, J. E. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. 13, 273-298. 10.5772/54269

Sponchiado, B. N., White, J. W., Castillo, J. A. & Jones, P. G. (1980). Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Experimental Agriculture, 25(2), 249-257.

Turner, N. C. (1986). Adaptation to water deficits: a changing perspective. Australian Journal Plant Physiology, 13, 175-190.

Usda. (2020). Foreign Agricultural Service. Website do United States Department of Agriculture.

Vadez, V., Kholová, J., Yadav, R. S. & Hash, C. T. (2013). Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant Soil, 371, 447–462.

Verma, V., Ravindran, P. & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(86), 1-10.

Viana, J. S., Gonçalves, E. P., Silva, A. C. & Matos, V. P. (2013). Climatic conditions and production of soybean in northeastern Brazil. In: Board, J. E. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. 18, 377-392. 10.5772/52184

Vitti, G. C.; Lima, E. & Cicarone, F. (2006). Nutrição mineral de plantas. Sociedade Brasileira de Ciência do Solo.

Wang, W. X., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.

Waraich, E. A., Ahmad, R. & Ashraf, M. Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6), 764-778.

Wilkinson, S. & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell & Environment, 33(4), 510-525. 10.1111/j.1365-3040.2009.02052.x

Xu, C., Xia, C., Xia, Z., Zhou, X., Huang, J., Huang, Z., Liu, Y., Jiang, Y., Casteel, S. & Zhang, C. (2018). Physiological and transcriptomic responses of reproductive stage soybean to drought stress. Plant Cell Reports, 37, 1611-1624. 10.1007/s00299-018-2332-3



How to Cite

VIANA, J. S.; TENÓRIO BARROS, C.; BORGES, J. P. G. da S.; SILVA, M. B. G.; GONÇALVES, E. P.; MOURA, M. F. de. Conditioners for cultivation soybean tolerant to the water deficit in the Northeast Semi-arid . Research, Society and Development, [S. l.], v. 10, n. 4, p. e16710413980, 2021. DOI: 10.33448/rsd-v10i4.13980. Disponível em: Acesso em: 20 apr. 2021.



Agrarian and Biological Sciences