Limitaciones para el cultivo de soja tolerante al déficit hídrico en la región Semiárida del Noreste

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i4.13980

Palabras clave:

Cambio climático; Producción en zonas áridas; Seguridad alimentaria.

Resumen

La soja es un cultivo de gran expresividad mundial y Brasil es actualmente el mayor productor y exportador de este cultivo, con potencial territorial para la expansión de su cultivo. A la vista de las previsiones de las principales instituciones gubernamentales (cambio climático, aumento de la población y escasez de recursos hídricos), garantizar la seguridad alimentaria de una población creciente requerirá estrategias y mejoras destinadas a aumentar la productividad. El objetivo fue identificar los atributos del ambiente y de las plantas de soja que las hacen tolerantes al déficit hídrico y que permiten aumentar la producción en ambientes semiáridos del nordeste de Brasil. Teniendo en cuenta que la mayoría de los grandes países productores de soja están compuestos en su mayoría por territorios áridos y semiáridos, y debido a los cambios climáticos actuales, existe una fuerte tendencia a que nuevas zonas se conviertan en áridas y semiáridas. Las soluciones para afrontar el estrés por déficit hídrico impuesto a la soja en ambientes áridos y semiáridos deben estar relacionadas con mejoras fisiológicas, morfológicas y genéticas que ayuden a afrontar este estrés. El aumento de las raíces, la mayor eficiencia en la fijación del nitrógeno, el control de la conductancia estomática y el uso eficiente del agua por parte de la planta son algunos de los retos a los que debe responder la ingeniería genética para desarrollar una variedad de soja tolerante al déficit hídrico. Deberían realizarse más estudios para encontrar respuestas capaces de solucionar el déficit hídrico en la soja.

Citas

Adesemoye, A. O. & Kloepper, J. W. (2009). Plant-microbes interactions in enhanced fertilizer use efficiency. Applied Microbiology and Biotechnology, 85, 1–12. DOI 10.1007/s00253-009-2196-0

Araujo, F. F. (2008). Inoculação de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodão. Ciência e Agrotecnologia, 32(2), 456-462. 10.1590/S1413-70542008000200017.

Battisti, R., Sentelhas, P. C., Boote K. J., Câmara, G. M. S., Farias, J. R. B. & Basso, C. J. (2017). Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. European Journal of Agronomy, 83, 1-14. https://doi.org/10.1016/j.eja.2016.11.004

Benjamin, J. G. & Nielsen, D. C. (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research, 97(2/3), 248-253. 10.1016/J.FCR.2005.10.005

Bittencourt, F., Mantovani, E. C., Sediyama, G. C. & Santos, N. T. (2018). Determinação de funções de produtividade de algodão e soja em cultivo sequeiro no extremo oeste da Bahia. Revista Agrogeoambiental, 10(1), 67-81. http://dx.doi.org/10.18406/2316-1817v10n120181089

Catuchi, T. A., Vítolo, H. F., Bertolli, S. C. & Souza, G. M. (2011). Tolerance to water deficiency between two soybean cultivars: transgenic versus conventional. Ciência Rural, 31(3), 373-378. https://doi.org/10.1590/S0103-84782011000300002

Catuchi, T. A., Guidorizzi, F. V. C., Guidorizi, K. A., Barbosa, A. M. & Souza, G. M. (2012). Respostas fisiológicas de cultivares de soja à adubação potássica sob diferentes regimes hídricos. Pesquisa Agropecuária Brasileira, 47(4), 519-527. https://doi.org/10.1590/S0100-204X2012000400007.

Choudhary, D. K., Sharma, K. P. & Gaur, R. K. (2011). Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett, 33, 1905–1910. 10.1007/s10529-011-0662-0

Chilundo, M., Joel, A. Wesström, I., Brito, R. & Messing, I. (2018). Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agricultural Water Management, 199, 120-137. https://doi.org/10.1016/j.agwat.2017.12.020

Conab. (2020). Safra Brasileira de Grãos. Website da Companhia Nacional de Abastecimento - CONAB. https://www.conab.gov.br/info-agro/safras/graos

Cortes, P. M. & Sinclair, T. R. (1986). Water Relations of Field-Grown Soybean under Drought. Crop Science, 26(5), 993-998. https://doi.org/10.2135/cropsci1986.0011183X002600050031x

Desa (2017) - United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision. Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248.

Devi, K. N., Singh, L. N. K., Devi, T. S., Devi, H. N.; Singh, T. B.; Singh, K. N. & Singh, W. N. (2012). Response of Soybean [Glycine max (L.) Merrill] to Sources and Levels of Phosphorus. Journal of Agricultural Science, 4(6), 44-53. 10.5539/jas.v4n6p44

Dodd, I. C., Zinovkina N. Y., Safronova, V. I. & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. Annal of Applied Biology, 157, 361-379. 10.1111/j.1744-7348.2010.00439.x

Embrapa. (2019). História da Soja. Website da Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA. https://bit.ly/2I8DOkt

Fao. (2019). ‘Climatesmart’ agriculture, policies, practices and finances for food security, adaptation andmitigation. Website da Organização para a Alimentação e Agriculturahttps – FAO. //bit.ly/2X4AETh.

Fao. (2011). The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk. FAO, Rome and Earthscan.

He, J., Du, Y., Wang, T., Turner, N. C., Yang, R., Xi, Y. J. Y., Zhang, C., Cui, T. & Fang, X. Li, F. (2017). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drough. Agricultural Water Management, 179, 236-245. https://doi.org/10.1016/j.agwat.2016.07.008

Jongdee, B., Fukai, S. & Cooper, M. (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Research, 76, 153-163. https://doi.org/10.1016/S0378-4290(02)00036-9

Jordan, W. R., Dugas, W. A. & Shouse, P. J. (1983). Strategies for crop improvement for drought prone regions. Agricultural Water Management, 7, 281-299. https://doi.org/10.1016/0378-3774(83)90090-2

Lemos, J. & Santiago, D. (2020). Instabilidade Temporal na Produção Agrícola Familiar de Sequeiro no Semiárido do Nordeste Brasileiro. Desenvolvimento Em Questão, 18(50), 186-200. https://doi.org/10.21527/2237-6453.2020.50.186-200

Kim, H., Cho, H. S., Pak, J. H., Kwon, T., Lee, J., Kim, D., Lee, D. H., Kim, C. & Chung, Y. (2018). Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean. Molecular and Cellular Biology, 41, 413-422. 10.14348/molcells.2018.2254

Ku, B. Y., Au-Yeung, W., Yung, Y., Li, M., Wen, C., Liu, X. & Lam, H. (2013). Drought stress and tolerance in soybean. In: Board, J.E. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. 10, 209-237. 10.5772/52945

Leite, M. A., Dias, F. A., Hernandes, F. B. T. & Oliveira J. N. (2019). Usos múltiplos da água. In: Dornfeld, C. B., Talamoni, A.C.B., Queiroz, T.V. O Jogo digital na sala de aula - Água, Ação E Reflexão: elaboração de jogo digital para a Educação Básica. 4, 44-57.

Manavalan, L. P., Guttikonda, S. K., Tran, L. P. & Nguyen H. T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology, 50(7), 1260-1276. https://doi.org/10.1093/pcp/pcp082

MDIC. (2020). Ministério do Desenvolvimento, Indústria e Comércio Exterior - Comex Vis/MDIC. Website do MDIC. http://comexstat.mdic.gov.br/pt/comex-vis.

Mondani, F., Khani, K., Honarmand, S. J. & Saeidi, M. (2019). Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition. Agricultural Water Management, 213, 707-713. https://doi.org/10.1016/j.agwat.2018.11.004

Morison, J. I. L., Baker, N. R., Mullineaux, P. M. & Davies, W. J. (2008). Improving water use in crop production. Philosophical Transactions of the Royal Society Biological Sciences, 363, 639-658. 10.1098/rstb.2007.2175

Moura, A. R., Nogueira, R. J. M. C., Silva, J. A. A. & Lima, T. V. (2016). Water relations and organic solutes in young plants of Jatropha curcas L. under diferente water regimes. Ciência Florestal, 26(2), 345-354.

Mutava, R. N., Prince, S. J. K., Syed, N. H., Song, L., Valliyodan, B., Chen, W. & Nguyen, H. T. (2015). Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry, 86, 109-120. https://doi.org/10.1016/j.plaphy.2014.11.0104

NEPOMUCENO, A. L. et al. Tolerância à seca em plantas. Biotecnologia Ciência e Desenvolvimento, 23, 12-18, 2001.

Oya, C., Schaefer, F., Skalidou, D., McCosker, C., & Langer, L. (2017). Effects of certification schemes for agricultural production on socio‐economic outcomes in low‐and middle‐income countries: a systematic review. Campbell Systematic Reviews, 13(1), 1-346. 10.4073/csr.2017.3.

Pandey, R. K., Herrera, W. A. T. & Pendleton, J. W. (1984). Drought response of grain legumes under irrigation gradient. III. Plant growth. Agronomy Journal, 76, 557-560. https://doi.org/10.2134/agronj1984.00021962007600040011x

Passioura, J. B. (1983). Roots and drought resistance. Agricultural Water Management, 7, 265-280. https://doi.org/10.1016/0378-3774(83)90089-6

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM

Prado, R. M. (2018). Nutrição de plantas. UNESP.

Prado, E. E., Hiromoto, D. M., Godinho, V. P. C., Utumi, M. M. & Ramalho, A. R. (2001). Adaptability and stability of soybean cultivars in five planting seasons in Rondônia cerrado. Pesquisa Agropecuária Brasileira, 36(4), 625-635. https://doi.org/10.1590/S0100-204X2001000400005

Purcell, L. C. & King, C. A. (1996). Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean. Journal of Plant Nutrition, 19, 969-993. https://doi.org/10.1080/01904169609365173

Ragab, R. & Prudhomme, C. (2002). Climate Change and Water Resources Management in Arid and Semi-arid Regions: Prospective and Challenges for the 21st Century. Biosystems Engineering, 81(1), 3-34. https://doi.org/10.1006/bioe.2001.0013

Ramos, L. A., Nolla, A., Korndörfer, G. H., Pereira, H. S. & Camargo, M. S. (2006). Reactivity of soil acidity correctives and conditioners in lysimeters. Revista Brasileira de Ciência do Solo, 30, 849-857. https://doi.org/10.1590/S0100-06832006000500011

Ruzzi, M. & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124-134. https://doi.org/10.1016/j.scienta.2015.08.042

Sadok, W. & Sinclair, T. R. (2011). Crops Yield Increase Under Water-Limited Conditions: Review of Recent Physiological Advances for Soybean Genetic Improvement. Advances in Agronomy, 113, 325-349. https://doi.org/10.1016/B978-0-12-386473-4.00007-5

Rouhallah, S., Masoud, A., Abbas, S. & Khalil, T. (2010). Pyoverdine production in Pseudomonas fluorescens UTPF5 and its association with suppression of common bean damping off caused by Rhizoctonia solani (Kuhn). Journal of Plant Protection Research, 50, 72-78.

Sharifi, R. & Ryu, C. M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany, 122(3), 349-358. 10.1093/aob/mcy108

Sinclair, T. R. & Muchow, R. C. (2001). System analysis of plant traits to increase grain yield on limited water supplies. Agronomy Journal, 93(2), 263-270. https://doi.org/10.2134/agronj2001.932263x

Sinclair, T. R., Purcell, L. C., King, C. A., Sneller, C. H., Chen, P. & Vadez, V. (2017). Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Research, 101, 68-71. https://doi.org/10.1016/j.fcr.2006.09.010

Sinclair, T. R. Messina, C. D. Beatty, A. & Samples, M. (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal, 102(2), 475-482. https://doi.org/10.2134/agronj2009.0195

Sivakumar, M. V. K., Das, H. P. & Brunini, O. (2005). Impacts of Present and Future Climate Variability and Change on Agriculture and Forestry in the Arid and Semi-Arid Tropics. Climatic Change, 70(1/2), 31-72. https://doi.org/10.1007/s10584-005-5937-9

Soratto, R. P. & Crusciol, C. A. C. (2008). Nutrition and grain yield of black oat as affected by surface application of lime and phosphogypsum at the establishment of no-tillage system. Revista Brasileira de Ciência do Solo, 32, 715-725. https://doi.org/10.1590/S0100-06832008000200026.

Souza, G. M., Catuchi, T. A., Bertolli, S. C. & Soratto, R. P. (2013). Soybean under Water Deficit: Physiological and Yield Responses. In: Board, J. E. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. 13, 273-298. 10.5772/54269

Sponchiado, B. N., White, J. W., Castillo, J. A. & Jones, P. G. (1980). Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Experimental Agriculture, 25(2), 249-257. https://doi.org/10.1017/S0014479700016756

Turner, N. C. (1986). Adaptation to water deficits: a changing perspective. Australian Journal Plant Physiology, 13, 175-190. https://doi.org/10.1071/PP9860175

Usda. (2020). Foreign Agricultural Service. Website do United States Department of Agriculture. https://bit.ly/2I9JQS1.

Vadez, V., Kholová, J., Yadav, R. S. & Hash, C. T. (2013). Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant Soil, 371, 447–462. https://doi.org/10.1007/s11104-013-1706-0

Verma, V., Ravindran, P. & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(86), 1-10. https://doi.org/10.1186/s12870-016-0771-y

Viana, J. S., Gonçalves, E. P., Silva, A. C. & Matos, V. P. (2013). Climatic conditions and production of soybean in northeastern Brazil. In: Board, J. E. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. 18, 377-392. 10.5772/52184

Vitti, G. C.; Lima, E. & Cicarone, F. (2006). Nutrição mineral de plantas. Sociedade Brasileira de Ciência do Solo.

Wang, W. X., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14. https://doi.org/10.1007/s00425-003-1105-5

Waraich, E. A., Ahmad, R. & Ashraf, M. Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6), 764-778.

Wilkinson, S. & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell & Environment, 33(4), 510-525. 10.1111/j.1365-3040.2009.02052.x

Xu, C., Xia, C., Xia, Z., Zhou, X., Huang, J., Huang, Z., Liu, Y., Jiang, Y., Casteel, S. & Zhang, C. (2018). Physiological and transcriptomic responses of reproductive stage soybean to drought stress. Plant Cell Reports, 37, 1611-1624. 10.1007/s00299-018-2332-3

Publicado

04/04/2021

Cómo citar

VIANA, J. S.; TENÓRIO BARROS, C.; BORGES, J. P. G. da S.; SILVA, M. B. G.; GONÇALVES, E. P.; MOURA, M. F. de. Limitaciones para el cultivo de soja tolerante al déficit hídrico en la región Semiárida del Noreste. Research, Society and Development, [S. l.], v. 10, n. 4, p. e16710413980, 2021. DOI: 10.33448/rsd-v10i4.13980. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13980. Acesso em: 8 ene. 2025.

Número

Sección

Ciencias Agrarias y Biológicas