Advanced oxidative processes applied in effluents treatment of membranes production: a review
DOI:
https://doi.org/10.33448/rsd-v10i4.14253Keywords:
Polymeric membranes; Phase inversion; Sustainable alternatives; Wastewater.Abstract
The application of new technologies and research in water treatment are the ways to minimize the impacts caused to the environment and the improvement of water resources and, consequently, the economic and social of a region. Among the technologies, we highlight the Advanced Oxidative Processes (AOP’s), which are based on the use of highly oxidizing species to promote a more effective degradation of the pollutant to be treated. This work aims to conduct a review of POA’s, which are: Photocatalysis with titanium dioxide (TiO2)/ultraviolet (UV), Photo-Fenton and Hydrogen Peroxide (H2O2)/UV, identifying the most suitable processes according to the pollutant to be treated. AOP’s are presented as an option to degrade organic pollutants that have high chemical stability, due to the inefficiency of common methods of treating effluents that are difficult to degrade. Furthermore, AOP’s appear as a technology where it is more efficient in treating effluents at a low operating cost. Therefore, AOP’s have great potential to be applied in the treatment of various effluents obtained from the solvents used in the production of membranes.
References
Afsharnia, M., Kianmehr, M., Biglari, H., Dargahi, A., Karimi, A. (2018). Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Science and Engineering. 11(3), 214-219. https://doi.org/10.1016/j.wse.2018.10.001
Ameta, S. C. Introduction. In. Ameta, S. C., Ameta, R. (Organizadores). (2018). Advanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology. Academic Press, 1-12. ISBN: 0128105259
Anadão, P. (2010). Ciência e Tecnologia de Membranas. Artliber Editora Ltda. ISBN: 8588098504.
Arcanjo, G. S., Mounteer, A. H., Bellato, C. R., Da Silva, L. M. M., Dias, S. H. B., Da Silva, P. R. (2018). Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV–visible irradiation for color and toxicity reduction in secondary textile mill effluent. Journal of Environmental Management. 211, 154-163. https://doi.org/10.1016/j.jenvman.2018.01.033
Arimi, M. M. (2017). Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent. Progress in Natural Science: Materials International, 27 (2), 275-282. https://doi.org/10.1016/j.pnsc.2017.02.001
Athanasekou, C. P., Likodimos, V., Falaras, P. (2018). Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. Journal of Environmental Chemical Engineering, 6 (6), 7386-7394. https://doi.org/10.1016/j.jece.2018.07.026
Baker, R. W. (2004). Membrane Technology and Applications, Second Edition, (Eletrônico), John Wiley & Sons Inc. ISBN: n0-470-85445-6
Bauer, R., Waldner, G., Fallmann, H., Hagner, M., Krutzler, T., Malato, S., Maletzky, P. (1999). The photo-fenton reaction and the TiO2/UV process for waste water treatment− novel developments. Catalysis Today, 53 (1), 131-144. https://doi.org/10.1016/S0920-5861(99)00108-X
Bila, D. M., Azevedo, E. B., Dezotti, M. (2008). Ozonização e Processos Oxidativos Avançados. In. Dezotti, M. Processos e Técnicas para o Controle Ambiental de Efluentes Líquidos. Rio de Janeiro, E-papers, 243-308. ISBN: 9788576501732
Brasil, Lei. Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente - Conama. (2005). Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes e altera a Resolução nº 357. http://www.suape.pe.gov.br/images/publicacoes/CONAMA_n.430.2011.pdf
Brito, N. N., Silva, V. B. M. (2012). Processo Oxidativo Avançado e Sua Aplicação Ambiental. Revista eletrônica de engenharia civil, 1 (3), 36-47. https://doi.org/10.5216/reec.v3i1.17000
Chang, C., Chen, J., Lu, M., Yang, H. (2005). Photocatalytic oxidation of gaseous DMF using thin film TiO2 photocatalyst. Chemosphere, 58 (8), 1071-1078. https://doi.org/10.1016/j.chemosphere.2004.09.072
Chen, Z., Su, H., Hu, D., Jia, F., Li, Z., Cui, Y., Ran, C., Wang, Z., Xu, J., Xiao, T., Li, X., Wang, H. Effect of organic loading rate on the removal of DMF, MC and IPA by a pilot-scale AnMBR for treating chemical synthesis-based antibiotic solvent wastewater. Chemosphere, v. 198, p. 49-58, 2018. https://doi.org/10.1016/j.chemosphere.2018.01.091
Cheng, X., Zu, L., Jiang, Y., Shi, D., Cai, X., Ni, Y., Lin, S., Qin, Y. (2018). A titanium-based photo-fenton bifunctional catalyst of mp-mxene/TiO2 nanodots for dramatic enhancement of the catalutic efficiency is advanced oxidation processes. Chemical Communications, 54, 11622-11625. http://www.rsc.org/suppdata/c8/cc/c8cc05866k/c8cc05866k1.pdf
Dias, F. F., Silva, P. B. V., Santos, A. F. M. S., Andrade, J. G. P., Albuquerque, I. L. T. (2018). Tratamento de efluente têxtil através de processo oxidativo avançado (H2O2/TiO2/UV). Revista Geama - Ciências Ambientais e Biotecnologia, 4(3), 4-9. http://www.ead.codai.ufrpe.br/index.php/geama/article/view/2100
Domènec, X., Jardim, W.,Litter, M. I. (2001). Processos avanzados de oxidación para la eliminación de contaminantes. In: Eliminación de Contaminantes por Fotocatálisis Heterogénea, 3-26. https://www.researchgate.net/publication/237764122
Dou, P., Song, J., Zhao, S., Xu, S., Li, X., He, T. (2019). Novel low cost hybrid extraction-distillation-reverse osmosis process for complete removal of N, N-dimethylformamide from industrial wastewater. Process Safety and Environmental Protection, 130, 317-325. https://doi.org/10.1016/j.psep.2019.08.025
Ebrahimi, I., Gashti, M. P., Sarafpour, M. (2018). Photocatalytic discoloration of denim using advanced oxidation process with H2O2/UV. Journal of Photochemistry and Photobiology A: Chemistry, 360, 278-288. https://doi.org/10.1016/j.jphotochem.2018.04.053
El-Alami, W., Sousa, D. G., Rodríguez, C.F., Díaz, O. G., Rodríguez, J.M.D., El Azzouzi, M., Araña, J. (2017). Efect of TiF surface interaction on the photocatalytic degradation of phenol, aniline and formic acid. Journal of Photochemistry and Photobiology A: Chemistry, 348, 139-149. https://doi.org/10.1016/j.jphotochem.2017.08.010
Esplugas, S., Yue, P. L., Pervez, M. I. (1994). Degradation of 4-chlorophenol by photolytic oxidation. Water Research, 28(6), 1323-1328. https://doi.org/10.1016/0043-1354(94)90297-6
Ferreira, E. S. B., Ferreira, R. S. B., Luna, C. B. B., Araújo, E. M., Lira, H. L. (2021). Hollow fiber membranes of several materials and their applications. Research, Society and Development, 10 (1), e55910111206. http://dx.doi.org/10.33448/rsd-v10i1.11206
Figoli, A., Marino, T., Simone. S., Di Nicolo, E., Li, X. M., He, T., Tornaghi, S., Drioli, E. (2014). Towards nontoxic solvents for membrane preparation: a review. Green Chemistry, 16, 4034-4059. https://pubs.rsc.org/en/content/articlelanding/2014/gc/c4gc00613e#!divAbstract
Figoli, A., Simone, S., Drioli, E. Polymeric Membranes. In: Hilal, N., Ismail, A. F., Wright, C. J. (Orgs.) (2015). Membrane Fabrication. Boca Raton: CRC Press, 3-44. ISBN: 1482210460
Fioreze, M., Dos Santos, E. P., Schmachtenberg, N. (2014). Processos oxidativos avançados: fundamentos e aplicação ambiental. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 18 (1), 79-91. http://dx.doi.org/10.5902/2236117010662
Gohil, J. M., Choudhury, R. R. (2019). Introduction to Nanostructured and Nano-enhanced Polymeric Membranes: Preparation, Function, and Application for Water Purification. Nanoscale Materials in Water Purification, 2, 25-57. https://doi.org/10.1016/B978-0-12-813926-4.00038-0
Guerra, M. M. H., Alberola, I. O., Rodriguez, S. M., López, A. A., Merino, A. A., Lopera, A. E., Alonso, J. M. Q. (2019). Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Research, 156, 232-240. https://doi.org/10.1016/j.watres.2019.02.055
Habert, A. C., Borges, C. P., Nóbrega, R. (2006). Processo de Separação com Membranas. 1a ed. E-papers Serviços Editoriais Ltda. ISBN: 857650085X
Hamandi, M., Berhault, G., Kochkar, H. (2017). Influence of reduced graphene oxide on the synergism between rutileand anatase TiO2 particles in photocatalytic degradation of formic acid. Molecular Catalysis, 432, 125-130. https://doi.org/10.1016/j.mcat.2017.01.003
Hérissan, A., Meichtry, J. M., Remita, H., Colbeau-Justin, C., Litter, M. I. (2017). Reduction of nitrate by heterogeneous photocatalysis over pure and radiolytically modified TiO2 samples in the presence of formic acid. Catalysis Today, 281, 101-108. https://doi.org/10.1016/j.cattod.2016.05.044
Huang, W., Bianco, A., Brigante, M., Mailhot, G. (2018). UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: Efficiency, mechanism and effect of various water constituents. Journal of Hazardous Materials, 347, 279-287. https://doi.org/10.1016/j.jhazmat.2018.01.006
Kwon, S., Lin, T. C., Iglesia, E. (2020). Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. Journal of Catalysis, 383, 60-76. https://doi.org/10.1016/j.jcat.2019.12.043
Lima, C. A. P.; Araujo, B. A.; Silva, K. S.; Silva, C. B.; Lima, G. G. C.; Vieira, F. F.; Medeiros, K. M. (2020). Advanced oxidative process by heterogeneous photocatalysis for chemical laboratories effluents treatment. Desalination and Water Treatment, 174, 248-257. https://doi:10.5004/dwt.2020.24894
Loh, C. H., Wu, B., Ge, L., Pan, C., Wang, R. (2018). High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using sequencing batch reactor and membrane bioreactor: A feasibility study. Chemosphere, 194, 534-542. https://doi.org/10.1016/j.chemosphere.2017.12.013
M’bra, I. C., García-Muños, P., Drogui, P., Keller, N. Trokourey, A. Robert, D. (2019). Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with TiO2 immobilized on SiC foams. Journal of Photochemistry and Photobiology A: Chemistry, 368, 1-6. https://doi.org/10.1016/j.jphotochem.2018.09.007
Ma, T., Garg, S., Miller, C. J., Waite, T. D. (2015). Contaminant degradation by irradiated semiconducting silver chloride particles: Kinetics and modelling. Journal of Colloid and Interface Science, 446, 366-372. https://doi.org/10.1016/j.jcis.2014.11.069
Mariani, M. L., Brandi, R. J., Cassano, A. E., Zalazar, C. S. (2013). A kinetic model for the degradation of dichloroacetic acid and formic acid in water employing the H2O2/UV process. Chemical Engineering Journal, 225, 423-432. https://doi.org/10.1016/j.cej.2013.03.098
Mena, E., Rey, A., Beltrán, F. J. (2018). TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chemical Engineering Journal, 339, 369-380. https://doi.org/10.1016/j.cej.2018.01.122
Miller, K. L., Lee, C. W., Falconer, J. L., Medlin, J. W. (2010). Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2. Journal of Catalysis, 275 294-299. https://doi.org/10.1016/j.jcat.2010.08.011
Mrowetz, M., Selli, E. (2006). Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspension. Journal of Photochemistry and Photobiology A: Chemistry, 180, 15-22. https://doi.org/10.1016/j.jphotochem.2005.09.009
Negishi, N., Sugasawa, M., Miyazaki, Y., Hirami, Y., Koura, S. (2019). Effect of dissolved silica on photocatalytic water purification with a TiO2 ceramic catalyst. Water Research, 150, 40-46. https://doi.org/10.1016/j.watres.2018.11.047
Pan, Z., Song, C., Li, L., Wang, H., Pan, Y., Wang, Y., Feng, X. (2019). Membrane technology coupled with electrochemical oxidation processes for organic wastewater treatment: recente advances and future prospects. Chemical Engineering Journal, 1-19. https://doi.org/10.1016/j.cej.2019.01.188
Parrino, F., Camera-Roda, G., Loddo, V., Palmisano, G., Augugliaro, V. (2014). Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion. Water Research, 50, 189-199. https://doi.org/10.1016/j.watres.2013.12.001
Pascoal, S. A., Silva, C. B., Da Silva, K. S., De Lima, G. G. C., De Medeiros, K. M., De Lima, C. A. P. (2020). Treatment by TiO2/UV of wastewater generated in polymeric membranes production. Desalination and Water Treatment, 207, 30-32. https://doi.org/10.5004/dwt.2020.26390
Rauf, M. A., Meetani, M., Khaleel, A., Ahmed, A. (2015). Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chemical Engineering Journal, 157 (2-3), 373-378. https://doi.org/10.1016/j.cej.2009.11.017
Razali, M., Kim, J. F., Attfield, M., Budd, P. M., Drioli, E., Lee, Y. M., Szekely, G. (2015). Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chemistry, 17, 5196-5205. http://www.rsc.org/suppdata/c5/gc/c5gc01937k/c5gc01937k1.pdf
Ribeiro, J. P., Abdala Neto, E. F., Parente, T. C., Nascimento, R. F., Barros, A. L., Oliveira, A. G., Barros, F. C. F. Princípios Básicos. (2017). Processos Oxidativos Avançados: Fundamentos e Aplicações em Matrizes Ambientais. Imprensa Universitária, 11-40. http://www.repositorio.ufc.br/handle/riufc/32127
Riboni, F., Dozzi, M. V., Paganini, M. C., Giamello, E., Selli, E. (2017). Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation. Catalysis Today, 287, 176-181. https://doi.org/10.1016/j.cattod.2016.12.031
Sadi, A. B., Bilali, R. K. A., Abubshait, S. A., Kochkar, H. (2020). Low temperature design of titanium dioxide anatase materials decorated with cyanuric acid for formic acid photodegradation. Journal of Saudi Chemical Society, 24, 351-363. https://doi.org/10.1016/j.jscs.2020.01.009
Sang, W., Cui, J., Mei, L., Zhang, Q., Li, Y., Li, D., Zhang, W., Li, Z. (2019). Degradation of liquid phase N, N-dimethylformamide by dielectric barrier discharge plasma: Mechanism and degradation pathways. Chemosphere, 236, 124401. https://doi.org/10.1016/j.chemosphere.2019.124401
Silva, A. F. P. S., Araújo, E. M., Lira, H. L., Ferreira, R. S. B., Medeiros, V. N., Oliveira, S. S. L. (2021). Synthesis of polysulfone/alumina hollow fiber membranes for water treatment in the presence of indigo blue dye. Research, Society and Development, v. 10, n. 1, e18610110863. http://dx.doi.org/10.33448/rsd-v10i1.10863
Silva, M. B. R., Azevedo, P. V., Alves, T. L. B. (2014). Análise da degradação ambiental do alto curso da bacia hidrográfica do rio Paraíba. Boletim Goiano de Geografia (Online), 34 (1), 35-53. https://doi.org/10.5216/bgg.v34i1.29314
Turki, A., Guillard, C., Dappozze, F., Berhault, G., Ksibi, Z., Kochkar, H. (2014). Design of TiO2 nanomaterials for the photodegradation of formic acid – Adsorption isotherms and kinetics study. Journal of Photochemistry and Photobiology A: Chemistry, 279, 8-16. https://doi.org/10.1016/j.jphotochem.2014.01.008
Ulliman, S. L., Mckay, G., Rosario-Ortiz, F. L., Linden, K. G. (2018). Low levels of iron enhance UV/H2O2 efficiency at neutral pH. Water Research, 130, 234-242. https://doi.org/10.1016/j.watres.2017.11.041
Vieira, S. M. M., Costa, T. B., Naves, F. L. (2018). Utilização de processo oxidativo avançado (fotofenton) no tratamento de efluente à base de gasolina comercial. The Journal of Engineering and Exact Sciences – JCEC, 4 (1). https://doi.org/10.18540/jcecvl4iss1pp0014-0018
Wan, L., Sheng, J., Chen, H., Xu, Y. (2013). Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3. Journal of Hazardous Materials, 262, 114-120. https://doi.org/10.1016/j.jhazmat.2013.08.002
Wang, H. H., Jung, J. T., Kim, J. F., Kim, S., Drioli, E., Lee, Y. M. (2019). A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation. Journal of Membrane Science, 574, 44-54. https://doi.org/10.1016/j.memsci.2018.12.051
Wang, S., Shiraishi, F., Nakano, K. (2002). A synergistic effect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution. Chemical Engineering Journal, 87 (2), 261-271. https://doi.org/10.1016/S1385-8947(02)00016-5
Zolfaghari, A., Mortaheb, H. R., Meshkini, F. (2011). Removal of N-methyl-2-pyrrolidone by photocatalytic degradation in a batch reactor. Industrial & Engineering Chemistry Research, 50 (16), 9569-9576. https://doi.org/10.1021/ie200702b
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Bruna Aline Araújo; José Everton Soares de Souza; Kênia Kelly Freitas Sarmento; Larissa Dias Rebouças; Keila Machado de Medeiros; Carlos Antônio Pereira de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.