In vivo transdifferentiation, osteoconductive and osteoinductive properties of experimental water-soluble organo-biomaterials – A Pilot Study

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.15017

Keywords:

Tissue Engineering; Organic; Ectopic Grafting; Bone Regeneration; Immunohistochemical.

Abstract

Inorganic bovine bone matrix (IBBM) is a biomaterial with proven osteoconductive functionalities. The objective of this study was to assess the in vivo bone regeneration functionalities of IBBM modified or not by an experimental MOE in sheep. MOE synthesis was performed by suspending nacre particles (0.05 g, diameters < 0.01 mm) in anhydrous acetic acid (pH 7, 5 mL, 25°C, 72 hours) using magnetic stirring. Polyethylene carriers (d= 5.0 mm, l= 10.0 mm, open ends) of negative control (sham) or experimental groups (IBBM or MOE-modified IBBM) were placed (n=3 conditions /animal; intramuscularly) adjacent to the lower spine of adult sheep (8 animals, » 45 Kg, 2 years old). Tissues were harvested (at 3 or 6 months) after implantation in preparation for histological (H), morphometrical (MM) and immunohistochemical analyses (IH; Wnt-3a, CD34, Vimentin and PREF-1). MM data were tested for normality and variance homogeneity using the Shapiro-Wilk and Levene tests, and Mann Whitney and Kruskal-Wallis, respectively. IM data were analyzed using two-way ANOVA and Tukey tests. Differences (p < 0.05) were observed between experimental groups (IBBM and IBBM+MOE at both 3 and 6 months) and controls (sham) for total area; Differences were not found for presence of remnant particles among experimental groups. The highest formation of bone was observed with IBBM+MOE (6-months). No differences (p > 0.05) were found on IM analysis (CD34, Vimentin, PREF-1, Wnt3a). Results indicated that experimental materials (IBBM+MOE) display promising functionalities. Additional studies are necessary to define biomaterials’ longitudinal effects and long-term biocompatibility properties.

References

Aarthy, S., Thenmuhil, D., Dharunya, G., & Manohar, P. (2019, February 12). Exploring the effect of sintering temperature on naturally derived hydroxyapatite for bio-medical applications [journal article]. Journal of Materials Science: Materials in Medicine, 30(2), 21. https://doi.org/10.1007/s10856-019-6219-9

Addadi, L., Joester, D., Nudelman, F., & Weiner, S. (2006). Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes. Chemistry – A European Journal, 12(4), 980-987. https://doi.org/10.1002/chem.200500980

Akiyama, T., Sato, S., Chikazawa-Nohtomi, N., Soma, A., Kimura, H., Wakabayashi, S., Ko, S. B. H., & Ko, M. S. H. (2018). Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by combining RNA-based MYOD1-expression and POU5F1-silencing. Scientific reports, 8(1), 1189-1189. https://doi.org/10.1038/s41598-017-19114-y

Anderson, H. C., Hodges, P. T., Aguilera, X. M., Missana, L., & Moylan, P. E. (2000, Nov). Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage. J Histochem Cytochem, 48(11), 1493-1502. https://doi.org/10.1177/002215540004801106

Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008, 2008/04/01/). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86-100. https://doi.org/https://doi.org/10.1016/j.smim.2007.11.004

Asvanund, P. C., P. Suddhasthira, T. (2011, Feb). Potential induction of bone regeneration by nacre: an in vitro study. Implant Dent, 20(1), 32-39. https://doi.org/10.1097/ID.0b013e3182061be1

Atlan, G., Balmain, N., Berland, S., Vidal, B., & Lopez, É. (1997, 1997/03/01/). Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie, 320(3), 253-258. https://doi.org/https://doi.org/10.1016/S0764-4469(97)86933-8

Baron, R., & Kneissel, M. (2013, Feb). WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med, 19(2), 179-192. https://doi.org/10.1038/nm.3074

Beauchamp, J. R., Heslop, L., Yu, D. S. W., Tajbakhsh, S., Kelly, R. G., Wernig, A., Buckingham, M. E., Partridge, T. A., & Zammit, P. S. (2000). Expression of Cd34 and Myf5 Defines the Majority of Quiescent Adult Skeletal Muscle Satellite Cells. The Journal of Cell Biology, 151(6), 1221-1234. https://doi.org/10.1083/jcb.151.6.1221

Bennett, C. N., Longo, K. A., Wright, W. S., Suva, L. J., Lane, T. F., Hankenson, K. D., & MacDougald, O. A. (2005, Mar 1). Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A, 102(9), 3324-3329. https://doi.org/10.1073/pnas.0408742102

Carvalho, P. S. P. d. C., Bassi, A. P. F., & Pereira, L. A. V. D. (2004). Revisão e proposta de nomenclatura para os biomateriais. Revista Implant News, 1(3), 255-260.

Chaturvedi, R., Singha, P. K., & Dey, S. (2013). Water Soluble Bioactives of Nacre Mediate Antioxidant Activity and Osteoblast Differentiation. PLOS ONE, 8(12), e84584. https://doi.org/10.1371/journal.pone.0084584

Cho, Y. D., Yoon, W. J., Kim, W. J., Woo, K. M., Baek, J. H., Lee, G., Ku, Y., van Wijnen, A. J., & Ryoo, H. M. (2014, Jul 18). Epigenetic modifications and canonical wingless/int-1 class (WNT) signaling enable trans-differentiation of nonosteogenic cells into osteoblasts. J Biol Chem, 289(29), 20120-20128. https://doi.org/10.1074/jbc.M114.558064

da Silva, R. C., Crivellaro, V. R., Giovanini, A. F., Scariot, R., Gonzaga, C. C., & Zielak, J. C. (2016, Jan-Jun). Radiographic and histological evaluation of ectopic application of deproteinized bovine bone matrix. Ann Maxillofac Surg, 6(1), 9-14. https://doi.org/10.4103/2231-0746.186150

de Almeida, U., Zielak, J.C., Filietaz, M., Giovanini, A.F., Deliberador, T.M., Ulbrich, L.M., Gonzaga, C.C. (2011). Biomaterial’s analysis and use, made of crassostrea giga shells in rats’ periodontal defects. Odontol. Clín.-Cient., 10(3), 259-263.

Donaruma, L. G. (1988). Definitions in biomaterials, D. F. Williams, Ed., Elsevier, Amsterdam, 1987, 72 pp. Journal of Polymer Science Part C: Polymer Letters, 26(9), 414-414. https://doi.org/10.1002/pol.1988.140260910

Duplat, D., Chabadel, A., Gallet, M., Berland, S., Bedouet, L., Rousseau, M., Kamel, S., Milet, C., Jurdic, P., Brazier, M., & Lopez, E. (2007, Apr). The in vitro osteoclastic degradation of nacre. Biomaterials, 28(12), 2155-2162. https://doi.org/10.1016/j.biomaterials.2007.01.015

Fhied, C., Kanangat, S., & Borgia, J. A. (2014, May). Development of a bead-based immunoassay to routinely measure vimentin autoantibodies in the clinical setting. J Immunol Methods, 407, 9-14. https://doi.org/10.1016/j.jim.2014.03.011

Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H. (2010, 2010/12/01/). Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceramics International, 36(8), 2383-2393. https://doi.org/https://doi.org/10.1016/j.ceramint.2010.07.016

Galindo-Moreno, P., Hernandez-Cortes, P., Mesa, F., Carranza, N., Juodzbalys, G., Aguilar, M., & O'Valle, F. (2013, Dec). Slow resorption of anorganic bovine bone by osteoclasts in maxillary sinus augmentation. Clin Implant Dent Relat Res, 15(6), 858-866. https://doi.org/10.1111/j.1708-8208.2012.00445.x

Habibovic, P., Kruyt, M. C., Juhl, M. V., Clyens, S., Martinetti, R., Dolcini, L., Theilgaard, N., & van Blitterswijk, C. A. (2008, Oct). Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res, 26(10), 1363-1370. https://doi.org/10.1002/jor.20648

Huang, Z., & Li, X. (2012, Jul 13). Order-disorder transition of aragonite nanoparticles in nacre. Phys Rev Lett, 109(2), 025501. https://doi.org/10.1103/PhysRevLett.109.025501

Jasani, B. (2000). Manual of Diagnostic Antibodies for Immunohistology: Leong AS-Y, Cooper K, Joel F, Leong W-M. (£45.00.) Oxford University Press, 1999. ISBN 1 900151 31 6. Molecular Pathology, 53(1), 53-53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1186905/

Jing, W., Smith, A. A., Liu, B., Li, J., Hunter, D. J., Dhamdhere, G., Salmon, B., Jiang, J., Cheng, D., Johnson, C. A., Chen, S., Lee, K., Singh, G., & Helms, J. A. (2015, Apr). Reengineering autologous bone grafts with the stem cell activator WNT3A. Biomaterials, 47, 29-40. https://doi.org/10.1016/j.biomaterials.2014.12.014

Lagace, R., Grimaud, J. A., Schurch, W., & Seemayer, T. A. (1985). Myofibroblastic stromal reaction in carcinoma of the breast: variations of collagenous matrix and structural glycoproteins. Virchows Arch A Pathol Anat Histopathol, 408(1), 49-59.

Le Nihouannen, D., Daculsi, G., Saffarzadeh, A., Gauthier, O., Delplace, S., Pilet, P., & Layrolle, P. (2005, 2005/06/01/). Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone, 36(6), 1086-1093. https://doi.org/https://doi.org/10.1016/j.bone.2005.02.017

Lee, J., Choi, W. I., Tae, G., Kim, Y. H., Kang, S. S., Kim, S. E., Kim, S. H., Jung, Y., & Kim, S. H. (2011, Jan). Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-epsilon-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Acta Biomater, 7(1), 244-257. https://doi.org/10.1016/j.actbio.2010.08.017

Leucht, P., Jiang, J., Cheng, D., Liu, B., Dhamdhere, G., Fang, M. Y., Monica, S. D., Urena, J. J., Cole, W., Smith, L. R., Castillo, A. B., Longaker, M. T., & Helms, J. A. (2013, Jul 17). Wnt3a reestablishes osteogenic capacity to bone grafts from aged animals. J Bone Joint Surg Am, 95(14), 1278-1288. https://doi.org/10.2106/jbjs.L.01502

Lioubavina-Hack, N., Karring, T., Lynch, S. E., & Lindhe, J. (2005, Dec). Methyl cellulose gel obstructed bone formation by GBR: an experimental study in rats. J Clin Periodontol, 32(12), 1247-1253. https://doi.org/10.1111/j.1600-051X.2005.00791.x

Lopez, E., Giraud, M., Berland, S., Milet, C., Gutierrez, G. (1996). Method for preparation of active substances from nacre, resulting products, useful in medicinal applications (France Patent No. A. f. b. C. N. D. L. R. S. (Cnrs).

Lopez, E., Vidal, B., Berland, S., Camprasse, S., Camprasse, G., & Silve, C. (1992). Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell, 24(5), 667-679.

Lopez-Heredia, M. A., Kamphuis, G. J., Thune, P. C., Oner, F. C., Jansen, J. A., & Walboomers, X. F. (2011, Aug). An injectable calcium phosphate cement for the local delivery of paclitaxel to bone. Biomaterials, 32(23), 5411-5416. https://doi.org/10.1016/j.biomaterials.2011.04.010

Marins, L. V., Cestari, T. M., Sottovia, A. D., Granjeiro, J. M., & Taga, R. (2004, Mar). Radiographic and histological study of perennial bone defect repair in rat calvaria after treatment with blocks of porous bovine organic graft material. J Appl Oral Sci, 12(1), 62-69. https://doi.org/10.1590/s1678-77572004000100012

Martín-Moldes, Z., Ebrahimi, D., Plowright, R., Dinjaski, N., Perry, C. C., Buehler, M. J., & Kaplan, D. L. (2018). Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk–Silica Chimeras. Advanced Functional Materials, 28(27), 1702570. https://doi.org/10.1002/adfm.201702570

Martini, L., Fini, M., Giavaresi, G., & Giardino, R. (2001, Aug). Sheep model in orthopedic research: a literature review. Comp Med, 51(4), 292-299.

Miclea, R. L., Karperien, M., Langers, A. M., Robanus-Maandag, E. C., van Lierop, A., van der Hiel, B., Stokkel, M. P., Ballieux, B. E., Oostdijk, W., Wit, J. M., Vasen, H. F., & Hamdy, N. A. (2010, Dec). APC mutations are associated with increased bone mineral density in patients with familial adenomatous polyposis. J Bone Miner Res, 25(12), 2624-2632. https://doi.org/10.1002/jbmr.153

Minear, S., Leucht, P., Jiang, J., Liu, B., Zeng, A., Fuerer, C., Nusse, R., & Helms, J. A. (2010, Apr 28). Wnt proteins promote bone regeneration. Sci Transl Med, 2(29), 29ra30. https://doi.org/10.1126/scitranslmed.3000231

Morvan, F., Boulukos, K., Clement-Lacroix, P., Roman Roman, S., Suc-Royer, I., Vayssiere, B., Ammann, P., Martin, P., Pinho, S., Pognonec, P., Mollat, P., Niehrs, C., Baron, R., & Rawadi, G. (2006, Jun). Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res, 21(6), 934-945. https://doi.org/10.1359/jbmr.060311

Nogami, K., Blanc, M., Takemura, F., Takeda, S., Miyagoe-Suzuki, Y. (2018). Making Skeletal Muscle from Human Pluripotent Stem Cells, Muscle Cell and Tissue. In K. Sakuma (Ed.), Current Status of Research Field. IntechOpen. https://doi.org/10.5772/intechopen.77263

Nusse, R., & Varmus, H. (2012, Jun 13). Three decades of Wnts: a personal perspective on how a scientific field developed. Embo j, 31(12), 2670-2684. https://doi.org/10.1038/emboj.2012.146

Oliveira, D. V., Silva, T. S., Cordeiro, O. D., Cavaco, S. I., & Simes, D. C. (2012). Identification of proteins with potential osteogenic activity present in the water-soluble matrix proteins from Crassostrea gigas nacre using a proteomic approach. TheScientificWorldJournal, 2012, 765909-765909. https://doi.org/10.1100/2012/765909

Reimann, J., Brimah, K., Schroder, R., Wernig, A., Beauchamp, J. R., & Partridge, T. A. (2004, Feb). Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures. Cell Tissue Res, 315(2), 233-242. https://doi.org/10.1007/s00441-003-0833-y

ROSA, A. L., SHAREEF, M. Y., & van NOORT, R. (2000). Efeito das condições de preparação e sinterização sobre a porosidade da hidroxiapatita. Pesquisa Odontológica Brasileira, 14, 273-277. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-74912000000300015&nrm=iso

Rousseau, M. (2011). Nacre, a Natural Biomaterial. IntechOpen. https://doi.org/10.5772/22978.

Seifi, S., Shafaie, S., & Ghadiri, S. (2011). Microvessel density in follicular cysts, keratocystic odontogenic tumours and ameloblastomas. Asian Pac J Cancer Prev, 12(2), 351-356.

Silve, C., Lopez, E., Vidal, B., Smith, D. C., Camprasse, S., Camprasse, G., & Couly, G. (1992, Nov). Nacre initiates biomineralization by human osteoblasts maintained in vitro. Calcif Tissue Int, 51(5), 363-369. https://doi.org/10.1007/bf00316881

Trotta, D. R., Gorny, C., Jr., Zielak, J. C., Gonzaga, C. C., Giovanini, A. F., & Deliberador, T. M. (2014, Sep). Bone repair of critical size defects treated with mussel powder associated or not with bovine bone graft: histologic and histomorphometric study in rat calvaria. J Craniomaxillofac Surg, 42(6), 738-743. https://doi.org/10.1016/j.jcms.2013.11.004

Urist, M. R. (1965, Nov 12). Bone: formation by autoinduction. Science, 150(3698), 893-899. https://doi.org/10.1126/science.150.3698.893

Urist, M. R., & Strates, B. S. (1970). 29 Bone Formation in Implants of Partially and Wholly Demineralized Bone Matrix: Including Observations on Acetone-fixed Intra and Extracellular Proteins. Clinical Orthopaedics and Related Research®, 71, 271-278. https://journals.lww.com/clinorthop/Fulltext/1970/07000/29_Bone_Formation_in_Implants_of_Partially_and.31.aspx

Wang, H. L., & Cooke, J. (2005, Jul). Periodontal regeneration techniques for treatment of periodontal diseases. Dent Clin North Am, 49(3), 637-659, vii. https://doi.org/10.1016/j.cden.2005.03.004

Wu, G., Hunziker, E. B., Zheng, Y., Wismeijer, D., & Liu, Y. (2011, 2011/12/01/). Functionalization of deproteinized bovine bone with a coating-incorporated depot of BMP-2 renders the material efficiently osteoinductive and suppresses foreign-body reactivity. Bone, 49(6), 1323-1330. https://doi.org/https://doi.org/10.1016/j.bone.2011.09.046

Zambuzzi, W. F., Fernandes, G. V., Iano, F. G., Fernandes Mda, S., Granjeiro, J. M., & Oliveira, R. C. (2012). Exploring anorganic bovine bone granules as osteoblast carriers for bone bioengineering: a study in rat critical-size calvarial defects. Braz Dent J, 23(4), 315-321.

Zhang, G., Brion, A., Willemin, A. S., Piet, M. H., Moby, V., Bianchi, A., Mainard, D., Galois, L., Gillet, P., & Rousseau, M. (2017, Feb). Nacre, a natural, multi-use, and timely biomaterial for bone graft substitution. J Biomed Mater Res A, 105(2), 662-671. https://doi.org/10.1002/jbm.a.35939

Zielak, J. C., Neto, D. G., Cazella Zielak, M. A., Savaris, L. B., Esteban Florez, F. L., & Deliberador, T. M. (2018). In vivo regeneration functionalities of experimental organo-biomaterials containing water-soluble nacre extract. Heliyon, 4(9), e00776-e00776. https://doi.org/10.1016/j.heliyon.2018.e00776

Downloads

Published

17/05/2021

How to Cite

CRIVELLARO, V. R. .; SPADA, G.; JUDACHESCI , C. S.; SPADA, P. P. .; SALING, L. R.; MIRANDA, I. T. .; DELIBERADOR, T. M.; GABARDO, M. C. L. .; SCARIOT, R.; LEÃO, M. P. .; STORRER, C. L. M. .; KHAJOTIA, S. S. .; ESTEBAN FLOREZ, F. L.; ZIELAK, J. C. In vivo transdifferentiation, osteoconductive and osteoinductive properties of experimental water-soluble organo-biomaterials – A Pilot Study. Research, Society and Development, [S. l.], v. 10, n. 5, p. e45310515017, 2021. DOI: 10.33448/rsd-v10i5.15017. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15017. Acesso em: 6 jan. 2025.

Issue

Section

Health Sciences