Microorganisms in the biological control of root-knot nematode: A metanalytical study
DOI:
https://doi.org/10.33448/rsd-v10i6.15209Keywords:
Meloidogyne incognita; Meloidogyne javanica; Efficient microorganisms; Meta-analysis.Abstract
Nematodes can cause annual losses in the order of 100 billion dollars in crops worldwide. Its control using chemical nematicides proves to be quite aggressive to the environment. For this reason, the management of microorganisms has been promising. However, it is essential to know the control potential of each organism. Thus, the objective of this study was to verify the efficiency of different microorganisms in the biological control of Meloidogyne sp. A systematic review of the literature was carried out from 2000 to 2020 with the keywords “Meloidogyne and biology control", resulting in 659 articles, of which 51 were pre-selected and, after the more detailed evaluation, was selected ten published articles. These ten articles generated a total of 83 studies for meta-analyses. Each study included a treatment group using some microorganisms (bacteria, fungus, actinomycetes) for nematode biocontrol, a control group without using biocontrol agents. From this meta-analysis, we can observe that the use of microorganisms decreased the number of galls (42.05%), the number of eggs (57.77%), the gall index (28.58%) and the eggs mass (53.48%). The use of microorganisms was also positive in increasing root mass (832.89%). We can conclude that the use of microorganisms proved to be efficient in controlling nematodes M. javanica and M. incognita. The fungi Pleurotus ostreatus and Phanerochaete chrysosporium have more significant potential for biocontrol for these species.
References
Abbasi, A. A. H., & Sharf, R. (2011). Antagonistic effects of Pseudomonas fuorescens and Bacillus subtilis on Meloidogyne incognita infecting Vigna mungo L. International Journal of Plant, Animal and Environmental Sciences 2, 55–63.
Affokpon, A., Coyne, D. L., Htay, C. C., Agbèdè, R. D., Lawouin, L., & Coosemans, J. (2011). Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biology and Biochemistry, 43, 600–608. https://doi.org/10.1016/j.soilbio.2010.11.029
Alvarado-Herrejón, M., Larsen, J., Gavito, M. E., Jaramillo-López, P. F., Vestberg, M., Martínez-Trujillo, M., & Carreón-Abud, Y. (2019). Relation between arbuscular mycorrhizal fungi, root-lesion nematodes, and soil characteristics in maize agroecosystems. Applied Soil Ecology, 135, 1–8. https://doi.org/10.1016/j.apsoil.2018.10.019
Araújo, F. F. de & Marchesi, G. V. P. (2009). Uso de Bacillus subtilis no controle da meloidoginose e na promoção do crescimento do tomateiro. Ciência Rural 39(5), 1558–1561.
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
Beeman, A. Q., Njus, Z. L., Pandey, S., & Tylka, G. L. (2019). The effects of ILeVO and VOTiVO on root penetration and behavior of the soybean cyst nematode, Heterodera glycines. Plant Disease Journal, 103, 392–397. https://doi.org/10.1094/PDIS-02-18-0222-RE
Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260. https://doi.org/10.2436/im.v7i4.9480
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. John Wiley & Sons.
Cannayane, I., & Rajendran, G. (2001). Application of biocontrol agents and oil cakes for the management of Meloidogyne incognita in brinjal (Solanum melongena L.). Current Nematology, 12, 51-55.
Carneiro, R. M. D. G., Souza, I. S., & Belarmino, L. C. (1998). Nematicidal Activity of Bacillus spp. Strains on juveniles of Meloidogyne javanica. Nematologia Brasileira, 22, 12–21.
Carraro-Lemes, C. F., Deuner, C. C., Scheffer-Basso, S. M., & Mazzetti, V. C. G. (2020). Reaction of Avena spp. to different concentration levels of Meloidogyne javanica and M. incognita inoculum. Australian Journal of Crop Science, 14, 196–203. https://doi.org/10.21475/ajcs.20.14.01.p1960
Chen, S., & Dickinson, D. W. (2004). Biological control of nematodes with bacterial antagonists. In: Chen, Z., Chen, S. & Dickinson, D. W. (Eds). Nematology – advances and perspectives, v. 2: Nematode Management and utilization. Tsinghua University Press and CABI Publishing, 1041-1082.
Chet, I., Inbar, J., & Hadar, Y. (1997). Fungal antagonists and mycoparasitism. In: Wicklow, D. T. & Söderström, B. (Eds.), The Mycota. Environmental and microbial relationships, Springer-Verlag, 4, 165-184.
Chiellini, C. Cardelli, V., De Feudis, M., Corti, G., Cocco, S., Agnelli, A., Massaccesi, L., Alessi, G. D., Mengoni, A., & Mocali, S. (2019). Exploring the links between bacterial communities and magnetic susceptibility in bulk soil and rhizosphere of beech (Fagus sylvatica L.). Applied Soil Ecology, 138, 69–79. https://doi.org/10.1016/j.apsoil.2019.02.008
Choi, T. G., Maung, C. E. H., Lee, D. R., Henry, A. B., Lee, Y. S., & Kim, K. Y. (2020). Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE 100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato. Biocontrol Science and Technology, 30, 685–700. https://doi.org/10.1080/09583157.2020.1765980
Cochran, W. G. (1954). The Combination of Estimates from Different Experiments. Biometrics 10, 101. https://doi.org/10.2307/3001666
Coyne, D. L., Cortada, L., Dalzell, J. J., Claudius-Cole, A. O., Haukeland, S., Luambano, N., & Talwana, H. (2018). Plant-Parasitic Nematodes and Food Security in Sub-Saharan Africa. Annual Review of Phytopathology, 56, 381–403. https://doi.org/10.1146/annurev-phyto-080417
Dallemole-Giaretta, R., Freitas, L. G., Zooca, R. J. F., Podestá, G. S., Caixeta, L. B., Ferraz, S., & Lopes, E. A. (2010). Associação de Pochonia chlamydosporia, Bacillus cereus e fibra de coco no controle de Meloidogyne javanica em tomateiro. Nematologia Brasileira, 34, 18-22.
Du, B., Xu, Y., Dong, H., Li, Y., &Wang, J. (2020). Phanerochaete chrysosporium strain B-22, a nematophagous fungus parasitizing Meloidogyne incognita. PLOS ONE 15, 1–14. https://doi.org/10.1371/journal.pone.0216688
Duval, S. J., & Tweedie, R. L. (2000a). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463.
Duval, S. J., & Tweedie, R. L. (2000b). A nonparametric "trim and fill" method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association, 95(449), 89–98.
Duval, S. J. (2005). The trim and fill method. In: Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.). Publication bias in meta-analysis: Prevention, assessment, and adjustments. Chichester, England: Wiley, 127–144
Eapen, S. J., Beena, B., & Ramana, K. V. (2005). Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes. Journal of Invertebrate Pathology, 88, 218–225. https://doi.org/10.1016/j.jip.2005.01.011
Ferraz, S., Freitas, L. G., Lopes, E. A., & Dias-Arieira, C. R. (2010). Manejo sustentável de fitonematoides, Editora UFV.
Fabry, C. F. S., Freitas, L. G., Neves, W. S., Coutinho, M. M., Tótola, M. R., Oliveira, J. R., Dallemole-Giaretta, R., & Ferraz, S. (2007). Obtenção de Bactérias para a o Biocontrole de Meloidogyne javanica por Meio de Aquecimento de Solo e Tratamento com Filtrado de Raízes de Plantas Antagonistas a Fitonematóides. Fitopatologia Brasileira, 32, 79–82. https://doi.org/10.1590/s0100-41582007000100013
Fernandes, R. H., Lopes, E. A., Bontempo, A. F., Fuga, C. A. G., & Vieira, B. S. (2018). Bacillus spp. Isolates for the control of Meloidogyne incognita in common bean. Cientifica 46, 235–240. https://doi.org/10.15361/1984-5529.2018v46n3p235-240
Fernandes, R. H., Lopes, E. A., Vieira, B. S., & Amanda, F. (2013). Controle de Meloidogyne javanica na Cultura do Feijoeiro com Isolados de Bacillus spp. control of Meloidogyne javanica on common beans with Bacillus spp . isolates. Revista Trópica: Ciências Agrárias e Biológicas, 7, 76–81.
Fernandes, R. H., Vieira, B. S., Fuga, C. A. G., & Lopes, E. A. (2014). Pochonia chlamydosporia e Bacillus subtilis no controle de Meloidogyne incognita e M. javanica em mudas de tomateiro. Bioscience Journal, 30, 194–200.
Fosu-Nyarko, J., & Jones, M. G. K. (2015). Application of biotechnology for nematode control in crop plants. Advances in Botanical Research. Elsevier Ltd. https://doi.org/10.1016/bs.abr.2014.12.012
Freitas, L.G., Neves, W. S., Fabry, C. F. S., Marra, B. M., Coutinho, M. M., Romeiro, R. S., & Ferraz, S. (2005). Isolamento e seleção de rizobactérias para controle de nematoides formadores de galhas (Meloidogyne spp.) na cultura do tomateiro. Nematologia Brasileira, 29, 215-220.
Godefroid, M., Tixier, P., Chabrier, C., Djigal, D., & Quénéhervé, P. (2017). Associations of soil type and previous crop with plant-feeding nematode communities in plantain agrosystems. Applied Soil Ecology, 113, 63–70. https://doi.org/10.1016/j.apsoil.2017.01.012
Griffits, B. S., Bengough, A.G., Nielson, R., & Trudgill, D. L. (2002). The extent to which nematode communities are affected by soil factors - A pot experiment. Nematology, 4, 943–952. https://doi.org/10.1163/156854102321122566
Gurevitch, J., & Hedges, L. V. (1999). Statistical issues in ecological meta-analysis. Ecology, 80, 1142–1149. https://doi.org/10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2
Hallman, J., Davies, K. G., & Sikora, R. (2009). Biological control using microbial pathogens, endophytes and antagonists. In: Perry, R. N., Moens, M., & Starr, J. L. (Eds.). Root-knot nematodes. CAB International, 380-411.
Harrier, L. A., & Watson, C. A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science, 60, 149–157. https://doi.org/10.1002/ps.820
Harrier, L. A., Watson, C. A., Prasetiya dan Niken, Cofcewicz, E. T., Medeiros, C. A. B., Carneiro, R. M. D. G., Pierobom, C. R., Veresoglou, S. D., Chen, B., Rillig, M. C., Smith, S. E., Read, D., Gianinazzi, S., Gollotte, A., Binet, M. N., Van Tuinen, D., Redecker, D., & Wipf, D. (2012). Mycorrhizas in ecological interactions, 8, 53–62. https://doi.org/10.1007/s00572-010-0333-3
Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology. https://doi.org/10.1890/0012-9658(1999)080 [1150: TMAORR] 2.0.CO;2
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–1558. https://doi.org/10.1002/sim.1186
Hol, W. H. G., & Cook, R. (2005). An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic and Applied Ecology, 6, 489–503. https://doi.org/10.1016/j.baae.2005.04.001
Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, 4-10.
Hu, J., Hussain, M., Zhang, X., Tian, J., Liu, X., Duan, Y., & Xiang, M. (2019). Abundant and diverse fungal microbiota inhabit the white females and brown cysts of the cereal cyst nematode. Applied Soil Ecology. 147, 103372. https://doi.org/10.1016/j.apsoil.2019.103372
Huang, K., Jiang, Q., Liu, L., Zhang, S., Liu, C., Chen, H., Ding, W., & Zhang, Y. (2020). Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes. AMB Express, 10. https://doi.org/10.1186/s13568-020-01006-6
Ibrahim, H. M. M. M., Ahmad, E. M., Martínez-Medina, A., & Aly, M. A. M. M. (2019). Effective approaches to study the plant-root knot nematode interaction. Plant Physiology and Biochemistry, 141, 332–342. https://doi.org/10.1016/j.plaphy.2019.06.009
Inomoto, M. M. (2016). Técnicas clássicas da diagnose de fitonematoides. In: Oliveira, C. M.G., Santos, M. A., Castro, L. H. S. Diagnose de fitonematoides. Millenium, 368p.
Kossmeier, M., Ulrich S. T., & Voracek, M. (2020). Metaviz: Forest Plots, Funnel Plots, and Visual Funnel Plot Inference for Meta-Analysis. R package version 0.3.1. https://CRAN.R-project.org/package=metaviz
Lazaretti, E., & Bettiol, W. (1997). Tratamento de sementes de arroz, trigo, feijão e soja com um produto formulado a base de células e de metabólitos de Bacillus subtilis. Scientia Agrícola, 54, 89-96.
Liu, G., Lin, X., Xu, S., Liu, G., Liu, F., & Mu, W. (2020). Screening, identification, and application of soil bacteria with nematicidal activity against root-knot nematode (Meloidogyne incognita) on tomato. Pest Management Science, 76, 2217–2224. https://doi.org/10.1002/ps.5759
Lopes, E. A., Ferraz, S., Ferreira, P. A., Freitas, L. G., Dhingra, O. D., Gardiano, C. G., Carvalho, S. L., & Carvalho, S. L. (2007). Potencial de isolados de fungos nematófagos no controle de Meloidogyne javanica. Nematologia Brasileira, 31, 20–26.
Luambano, N. D., Manzanilla-López, R. H., Powers, S. J., Wanjohi, W. J., Kimenju, J. W. & Narla, R. D. (2019). Screening of locally available organic materials as substrates for the production of Pochonia chlamydosporia in Kenya. Biological Control – Journal, 133, 18–25. https://doi.org/10.1016/j.biocontrol.2019.03.001
Machado, V., Berlitz, D. L., Santos Matsumura, A. T., Santin, R. C. M., Guimarães, A. S. M. E., & Fiuza, L. M. (2012). Bactérias Como Agentes de Controle B,iológico de Fitonematóides. Oecologia Australis, 16, 165–182. https://doi.org/10.4257/oeco.2012.1602.02
Marlin, M., Wolf, A., Alomran, M., Carta, L. & Newcombe, G. (2019). Nematophagous Pleurotus species consume some nematode species but are themselves consumed by others. Forests, 10, 1–11. https://doi.org/10.3390/f10050404
Mazzuchelli, R. C. L., Mazzuchelli, E. H. L. & Araujo, F. F. (2020). Efficiency of Bacillus subtilis for root-knot and lesion nematodes management in sugarcane. Biological Control – Journal, 143, 104185. https://doi.org/10.1016/j.biocontrol.2020.104185
McSorley, R., & Frederick, J. J. (2002). Effect of subsurface clay on nematode communities in sandy soil. Applied Soil Ecology, 19, 1–11. https://doi.org/10.1016/S0929-1393(01)00167-6
McSorley, R., Wang, K. H., & Church, G. (2008). Suppression of root-knot nematodes in natural and agricultural soils. Applied Soil Ecology, 39, 291–298. https://doi.org/10.1016/j.apsoil.2008.01.002
Melo, I. S. E., & Azevedo, J. L. (2000). Controle Biológico. Jaguariúna: EMBRAPA Meio Ambiente, 388p.
Moazezikho, A.; Charehgani, H.; Abdollahi, M., & Rezaei, R (2020). Evidence of the inhibitory effect of Pseudomonas fluorescens CHA0 and aqueous extracts on tomato plants infected with Meloidogyne javanica (Tylenchida: Heteroderidae). Egyptian Journal of Biological Pest Control, 30. https://doi.org/10.1186/s41938-020-00217-0
Nagesh M. J. A., Veed, S., Ramanujam, B., & Rangeswaran, R. (2013). Suitability of soil types for Paecilomyces lilacinus and Pochonia chlamydosporia and their performance against root-knot nematode, Meloidogyne incognita on Lycopersicon esculentum in the glasshouse. Indian Journal of Agricultural Sciences, 83, 826–830.
Nimnoi, P., & Ruanpanun, P. (2020). Suppression of root-knot nematode and plant growth promotion of chilli (Capsicum flutescens L.) using co-inoculation of Streptomyces spp. Biological Control, 145, 104244.
Raj, S., Bhimrao, V. B., Arora, N., & Singh, S. (2017). Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review Environmental Sustainability View Project Special Issue “Endophytes for Managing Biotic and Abiotic Stress in Plants” View project. Pedosphere, 27, 177–192. https://doi.org/10.1016/S1002-0160(17)60309-6
Roberts, D. P., Lohrke, S. M., Meyer, S. L. F., Buyer, J. S., Bowers, J. H., Baker, C. J., Li, W., De Souza, J. T., Lewis, J. A., & Chung, S. (2005). Biocontrol agents applied individually and in combination for suppression of soil-borne diseases of cucumber. Crop Protection, 24, 141–155. https://doi.org/10.1016/j.cropro.2004.07.004
Rosenberg, M. S., Adams, D. C., & Gurevitch, J. (2000). MetaWin: statistical software for meta-analysis. Version 2.1.3.4, Sinauer Associates, Sunderland, Massachusetts.
Ruanpanun, P., Tangchitsomkid, N., Hyde, K. D., & Lumyong, S. (2010). Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: Screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 26, 1569–1578. https://doi.org/10.1007/s11274-010-0332-8
Sandoval, N. S. E., Guadalupe, M. M. E., Nakayo, J. L. J., Reyes, H. A. L., Córdova, V. A. L., Ocaña, J. C. M., & Chunata, N. M. I. (2020). Effect of Pleurotus ostreatus (Jacq.) and Trichoderma harzianum (rifai) on Meloidogyne incognita (kofoid & white) in tomato (Solanum lycopersicum mill.). Acta Scientiarum. Biological Sciences, 42, 1–8. https://doi.org/10.4025/actascibiolsci.v42i1.47522
Schouteden, N., Waele, D. D., Panis, B., & Vos, C. M. (2015). Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A review of the mechanisms involved. Frontiers in Microbiology, 6, 1–12. https://doi.org/10.3389/fmicb.2015.01280
Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H., & Khan, A. (2006). Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode Meloidogyne javanica in tomato. World Journal of Microbiology and Biotechnology, 22, 641–650.
Sikora, R. A., Pocasangre, L., Felde, A. Z., Niere, B., Vu, T. T., & Dababat, A. A. (2008). Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biological Control, 46, 15–23. https://doi.org/10.1016/j.biocontrol.2008.02.011
Sohrabi, F., Sheikholeslami, M., Heydari, R., Rezaee, S., & Sharifi, R. (2020). Investigating the effect of Glomus mosseae, Bacillus subtilis and Trichoderma harzianum on plant growth and controlling Meloidogyne javanica in tomato. Indian Phytopathology, 73, 293–300. https://doi.org/10.1007/s42360-020-00227-w
Sohrabi, F., Sheikholeslami, M., Heydari, R., Rezaee, S., & Sharifi, R. (2018). Evaluation of four rhizobacteria on tomato growth and suppression of root-knot nematode, Meloidogyne javanica under greenhouse conditions, a pilot study. Egyptian Journal of Biological Pest Control, 28, 1–5. https://doi.org/10.1186/s41938-018-0059-7
Sohrabi, F., Fadaei-Tehrani, A. A., & Danesh,Y., R. (2015). Study on the chitinase changes in interaction of arbuscular mycorrhizal fungus (Glomus mosseae) and root-knot nematode (Meloidogyne javanica) on tomato. Journal Plant Protection, 29, 349–356. https://doi.org/10.22067/JPP.V29I3.31791
Strom, N., Hu, W., Haarith, D., Chen, S., & Bushley, K. (2020). Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture. Applied Soil Ecology. 147. 103388. https://doi.org/10.1016/j.apsoil.2019.103388
Tsai, A. Y. L., Higaki, T., Nguyen, C. N., Perfus-Barbeoch, L., Favery, B., & Sawa, S. (2019). Regulation of Root-Knot Nematode Behavior by Seed-Coat Mucilage-Derived Attractants. Molecular Plant, 12, 99–112. https://doi.org/10.1016/j.molp.2018.11.008
Vaz, M. V., Canedo, E. J., Vieira, B. S., & Lopes, E. A. (2011). Controle biológico de Meloidogyne javanica e Meloidogyne incognita com Bacillus subtilis. Perquirere. 8, 203-212.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48.
Vimal, S. R., Singh, J. S. Arora, N. K., & Singh, S. (2017). Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere, 27, 177–192.
Vos, C., Claerhout, S., Mkandawire, R., Panis, B., Waele, D., & Elsen, A. (2012). Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil, 354, 335–345. https://doi.org/10.1007/s11104-011-1070-x
Vos, C. M., Tesfahun, A. N., Panis, B., De Waele, D., & Elsen, A. (2012). Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Applied Soil Ecology, 61, 1–6. https://doi.org/10.1016/j.apsoil.2012.04.007
Waele, K.U., & Leuven, D. D. (2006). Banana Rhizodeposition: Characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis. Plant Soil, 283, 217–228. https://doi.org/10.1007/s11104-006-0013-4
Watson, T. T.; Strauss, S. L., & Desaeger, J. A. (2020). Identification and characterization of Javanese root-knot nematode (Meloidogyne javanica) suppressive soils in Florida. Applied Soil Ecology, 154, 103597. https://doi.org/10.1016/j.apsoil.2020.103597
Wei, B. Q., Xue, Q. Y., Wei, L. H., Niu, D. D., Liu, H. X., Chen, L. F., & Guo, J. H. (2009). A novel screening strategy to identify biocontrol fungi using protease production or chitinase activity against Meloidogyne root-knot nematodes. Biocontrol Science and Technology, 19, 859–870. https://doi.org/10.1080/09583150903165636
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Wesemael, W. M. L., Viaene, N., & Moens, M. (2011). Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3–16. https://doi.org/10.1163/138855410X526831
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Whipps, J. M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82, 1198–1227. https://doi.org/10.1139/B04-082
Zhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., Xuan, Y., & Chen, L. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biological Control, 119, 12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tatiana Benedetti; Jaqueline Huzar-Novakowiski; Elisangela Sordi; Ivan Ricardo Carvalho; Edson Campanhola Bortoluzzi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.