Evaluating the thermoresistance of Bacillus cereus strains isolated from wheat flour





Wheat flour; Bacillus cereus; Contamination; Thermoresistance; Food.


Wheat flour is often used to prepare confectionery and baked goods, however, it can be contaminated by aporulating microorganisms contaminated during harvest or improper storage. The aim of this study was to isolate Bacillus cereus strains from different wheat flour brands and to evaluate their thermoresistance in different confectionery products. It was done in order to investigate the risks posed by food prepared with flour contaminated with B. cereus to consumers’ health. The investigation of B.cereus was realized in five brands of different wheat flours were collected and named A to E. The isolated strains were subjected to boiling tests in vitro to evaluate their thermoresistance. In addition, confectionery products were prepared with flour contaminated with B. cereus strains. These products were subjected to different cooking and B. cereus strain ATCC®30301™ was used as control. Flour brands were contaminated with B. cereus; and counts ranged from 0.25 to 1.57 log CFU/g. The strains presented higher thermoresistance in the confectionery products than in the test conducted in vitro. Based on our results, it was concluded that B. cereus strains are thermoresistant. Moreover, if the flour is contaminated with this bacterium, food products subjected to thermal treatments may remain contaminated. In addition, it is suggested that there is some mechanism (not observed in our study) that could directly influence the thermoresistance of strains found in food.

Author Biographies

Eliandra Mirlei Rossi, Universidade do Oeste de Santa Catarina

Graduada em Biologia, Doutora em Microbiologia Agrícola e do Ambiente

Suelen Caroline Mahl, Universidade do Oeste de Santa Catarina

Graduação em Biomedicina

Ana Carolina Spaniol, Universidade do Oeste de Santa Catarina

Graduada em Engenharia de Alimentos

Jéssica Fernanda Barreto Honorato, Universidade do Oeste de Santa Catarina

Graduada em Biomedicina, especialista em Inovação na Educação

Tauany Rocha, Universidade do Oeste de Santa Catarina

Graduação em Engenharia de Alimentos


Abee, T., Groot, M. N., Tempelaars, M., Zwietering, M., Moezelaar, R., & Voort, M. V. D. (2011). Germination and outgrowth of spores of Bacillus cereus group members: diversity and role of germinant receptors. Food Microbiology; 28(2): 199-208.

Arsenem, L. P. S., Fagerlund, A., & Granum, P. E. (2008). From soil to gut: Bacillus cereus and its food poisoning toxins. Microbiological Reviews 32:579-606.

Associação Brasileira da Indústria do Trigo - Abitrigo. Sobre o Trigo: O que é o trigo. (2018).

Bradshaw, J. G., Peeler, J. T., & Twedt, R. M. (1975). Heat resistence of ileal loop reactive Bacillus cereus strains isolated from commercially canned food. Applied Microbiology 30(6): 943-945.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 62, de 26 de agosto de 2003. Oficializa os Métodos Analíticos Oficiais para Análises Microbiológicas para Controle de Produtos de Origem Animal e Água. Diário Oficial da República Federativa do Brasil, Brasília, 18/09/2003.

Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sani¬tária. 2001. Resolução RDC n. 12, de 02 de janeiro de 2001. Regu¬lamento Técnico sobre os padrões microbiológicos para alimentos.

Carlin, F., Brillard, J., Broussolle, V., Clavel, T., Duport, C., Jobin, M., & Guinebretière, M. H, Auger S, Sorokine A, Nguyen-Thé C (2010). Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Research International, 43(7):1885-1894.

Chaves, J. Q., Pires, E. S., & Vivoni, A. M. (2011). Genetic diversity, antimicrobial resistance and toxigenic profiles of Bacillus cereus isolated from food in Brazil over three decades. International Journal of Food Microbiology, 147(1):12-16.

Chen, L., Coolbear, T., & Daniel, R. M. (2004). Characteristics of proteinases and lipases produced by seven Bacillus sp isolated from milk powder production lines. International Dairy Journal , 14:495- 504.

Den Besten, H. M. W., Van Der Mark, E. J., Hensen, L., Abee, T., & Zwietering, M. H (2010). Quantification of the effect of culturing temperature on salt-induced heat resistance of Bacillus species. Applied and Environmental Microbiology, 76(13): 4286-4292.

Dufrenne, J., Bijwaard, M., Giffel, M., Beumer, R., & Notermans, S. (1995). Characteristics of some psychrotrophics Bacillus cereus isolates. International Journal of Food Microbiology, 27: 175-183.

Eijlander, R. T., Abee, T., & Kuipers, O. P. (2011). Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Current Opinion in Biotechnology, 22 (2): 180-186.

Faille, C., Bénézech, T., Midelet-Bourdin, G., Lequette, Y., Clarisse, M., Ronse, G., Ronse, A., & Slomianny, C. (2014). Sporulation of Bacillus spp. within biofilms: A potential source of contamination in food processing environments. Food Microbiology, 40: 64-74.

Fazzioni, F. D. B., et al (2013). Microbiological evaluation of bakery products and risks to consumer health. Alimentos e Nutrição Araraquara, 24(2): 159-164.

Ferreira, R. A. (2003). Trigo: o alimento mais produzido no mundo. Nut. Brasil, 2(1): 45-52.

Garcia, M. V., et al (2019). Incidence of spoilage fungi in the air of bakeries with different hygienic status. International Journal of Food Microbiology, 290: 254–261

Johnson, K. M., et al (1982). Germination and Heat Resistance of Bacillus cereus Spores from Strains Associated with Diarrheal and Emetic Food-Borne Illnesses. Journal of Food Science, 47: 1268–1271.

Hoon, M. J. L., et al (2010). Hierarchical Evolution of the Bacterial Sporulation Network. Current Biology, 20(17): R735–R745.

Katyal, M., et al (2015). Diversity in quality traits amongst Indian wheat varieties I: Flour and protein characteristics. Food Chemistry, 194: 337-344.

Kucek, L. K. et al. (2017). Evaluation of wheat and emmer varieties for artisanal baking, pasta making, and sensory quality. Journal of Cereal Science, 74: 19-27.

Liu, S., et al (2018). Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: Influence of water activity at high temperatures. Food Microbiology, 74: 92-99.

Lound, L., et al. (2017). Resistencia térmica de Salmonella. Efecto del pH y la atividade del agua. Ciencia, Docencia y Tecnología –Suplemento, 7(7): 01-17.

Luu-Thi, H., et al (2014). Thermal inactivation parameters of spores from different phylogenetic groups of Bacillus cereus. International Journal of Food Microbiology, 189: 183–188.

Mckenney, P. T., et al (2013). The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nature Reviews Microbiology, 11(1): 33-44.

Meer, R. R., et al (1991). Psychrotrophic Bacillus spp in fluid milk products: A review. Journal of Food Protection, 54: 969-979.

Minguita, A. P. S, et al (2015). Produção e caracterização de massas alimentícias a base de alimentos biofortificados: trigo, arroz polido, feijão carioca com casca. Santa Maria, Ciência rural, 45(10): 1895-1901.

Paiva, E P., et al (2009). Bacillus cereus e suas toxinas em alimentos. Higiene Alimentar, 23(70-171): 87-92.

Prado, S. P. T., et al. (2005). Extraneous materials and microorganisms contamination in flours for sale in Ribeirão Preto, SP. Revista Instituto Adolfo Lutz, 64(2): 237-244.

Reyes, J. E., et al (2007). Prevalence of bacillus cereus in dried milk products use by Chilean School Feeding Program. Food Microbiology, 24: 1-6.

Rossi, E. M., et al (2012). Microbiological Contamination and Disinfection Procedures of Kitchen Sponges Used in Food Services. Food and Nutrition Sciences, 3: 975-980.

Rubio, M., & Andres, G (2015). Ocorrência de Bacillus cereus em arroz cru vitaminado e cinética de multiplicação do patógeno no arroz cozido. 48 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) – Universidade Federal de Viçosa, 2015.

Sánchez, J, et al (2016). Bacillus cereus un patógeno importante en el control microbiológico de los alimentos. Revista Facultad Nacional de Salud Pública, 34(2): 230-242.

Sánchez, J. A., et al (2014). Direct detection of toxigenic Bacillus cereus in dietary complement for children and cassava starch. Medellín, Revista Colombiana de Química, 43(2): 5-9.

Scheuer, P. M., et al (2014). Effects of fat replacement on properties f whole wheat bread. Brazilian Journal of Pharmaceutical Sciences, 50(4): 703-712.

Senesi, S., & Ghelardi, E. (2010). Production, secretion and biological activity of Bacillus cereus enterotoxins. Toxins, 2(7): 1690-1703.

Setlow P (2006). Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Applied Microbiology, 101(3): 514– 525.

Souza, J. R., et al (2015). Qualidade microbiológica da farinha de mandioca comercializada na região sudoeste da Bahia. Revista Brasileira de Produtos Agroindustriais, 17(2): 117-123.

Valerio F, et al (2012). Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. International Journal of Food Microbiology, 156(3): 278-285.

Van Der Auwera, G. A., Et Al (2007). Plasmid Exchanges Among Members Of The Bacillus Cereus Group In Foodstuffs. International Journal Food Microbiology, 113(2):164-72.

Wang, O. K. (1994). Kinetics of death of bacterial spores at elevated temperatures. Applied and Environmental Microbiology, 12(1): 451-454.

Webb, M.d, et al (2019). Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends in Food Science & Technology, 93: 94-105.

Wohlgemuth, S., & Kämpfer, P. (2014). Bacteria | Bacterial Endospores, Editor(s): Carl A. Batt, Mary Lou Tortorello, Encyclopedia of Food Microbiology (Second Edition), Academic Press.




How to Cite

ROSSI, E. M. .; MAHL, S. C.; SPANIOL, A. C. .; HONORATO, J. F. B. .; ROCHA, T. . Evaluating the thermoresistance of Bacillus cereus strains isolated from wheat flour. Research, Society and Development, [S. l.], v. 10, n. 6, p. e2510615268, 2021. DOI: 10.33448/rsd-v10i6.15268. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15268. Acesso em: 11 dec. 2023.



Health Sciences