Contribution to the maintenance of the permanent track with accelerometers in portable inertia packages
DOI:
https://doi.org/10.33448/rsd-v10i6.15369Keywords:
Railway superstructure; Derailment; Accelerometer.Abstract
Monitoring of the condition of railway systems has been widely used to support the assessment of the integrity of its structures and infrastructures. Permanent way geometric inspection is one of the main methods used for maintenance plans elaboration in railway networks. It is known that interventions are based on indications of nonconformities, according to intervals assumption for the analyzed parameters. However, even with this inspection, derailments originated in superstructure continues to occur. This paper presents the use of an inertial device in six railway sections, to complement the geometric inspections and prioritize maintenance scale. The execution of this study is justified because the equipment commonly used in track dynamics measurement have high prices and high complexity of installation. The accelerometer used is inexpensive and easy to apply. The mentioned device was able to identify critical points of vehicle-path interaction, that did not present geometry exception.
References
Arivazhagan, S., Newlin Shebiah, R., Salsome Magdalene, J., & Sushmitha, G. (2015). Railway track derailment inspection system using segmentation-based fractal texture analysis. ICTACT Journal on Image and Video Processing, 06(01), 1060–1065. doi:10.21917/ijivp.2015.0155
Boogaard, M. A., Li, Z., & Dollevoet, R. P. B. J. (2018). In situ measurements of the crossing vibrations of a railway turnout. Measurement, 125, 313–324. doi:10.1016/j.measurement.2018.04.094
Brina, H. L. (1983). Estradas de Ferro. Rio de Janeiro: Livros Tecnicos e Cientificos Ed.
Callegari-Jacques, S. M. (2003). Bioestatística: Princípios e Aplicações. Porto Alegre: Artmed.
Campos, P. C. O. (2019). Avaliação do efeito da variação da umidade no comportamento mecanístico de um trecho da Estrada de Ferro Carajás (Dissertação de Mestrado). Instituto Militar de Engenharia, Programa de Pós-Graduação em Engenharia de Transportes, Rio de Janeiro.
Cherchas, D. B. (1981). Determination of railway wheel climb probability based on the derailment coefficient. Journal of the Franklin Institute, 312(1), 31–40. doi:10.1016/0016-0032(81)90070-3
DIN EN 12229 (2009). Railway applications – Ride comfort for passengers – measurement and evaluation. Londres: British Standards Institution.
Indian Railways Institute of Civil Engineering. (2014). The investigation of derailments. Pune: IRICEN.
Iwnick, H. (2006). Handbook of Railway Vehicle Dynamics. CRC Press. doi:10.1201/9781420004892
Kasraei, A., & Zakeri, J. A. (2020). Effective time interval for railway track geometry inspection. Archives of Transport, 53(1), 53–65. doi:10.5604/01.3001.0014.1744
Liu, X., Barkan, C. P. L., & Saat, M. R. (2011). Analysis of Derailments by Accident Cause. Transportation Research Record: Journal of the Transportation Research Board, 2261(1), 178–185. doi:10.3141/2261-21
Liu, Y., & Magel, E. (2012). Understanding Wheel-Climb Derailments. In Railway Track and Structures (12th ed., Vol. 103, pp. 37–41). Simmons-Boardman Publishing Corporation. https://trid.trb.org/view/842625
Lopes, & Ciriaco, F. (2017). Análise e prevenção de descarrilamentos. Rio de Janeiro: Fundamentos de Engenharia Ferroviária, Instituto Militar de Engenharia.
Morales-Ivorra, S., Real, J. I., Hernández, C., & Montalbán, L. (2016). Derailment risk and dynamics of railway vehicles in curved tracks: Analysis of the effect of failed fasteners. Journal of Modern Transportation, 24(1), 38–47. doi:10.1007/s40534-015-0093-z
Ngamkhanong, C., Kaewunruen, S., & Costa, B. (2018). State-of-the-Art Review of Railway Track Resilience Monitoring. Infrastructures, 3(1), 3. doi:10.3390/infrastructures3010003
Pastori, A. (2007). As PPPs como ferramenta para viabilizar projetos de infra-estrutura ferroviária um estudo para reativação do trem de passageiros sobre trilhos. Revista do BNDES, 14(28), 93-100..
Ratton Neto, H. X. (1985). Padrões para Manutenção da Via Permanente (Dissertação de Mestrado). Instituto Militar de Engenharia, Programa de Pós-Graduação em Engenharia de Transportes, Rio de Janeiro.
Real, J. I., Montalbán, L., Real, T., & Puig, V. (2012). Development of a system to obtain vertical track geometry measuring axle-box accelerations from in service trains. Journal of Vibroengineering, 14(2), 813–826. Recuperado em https://www.jvejournals.com/article/10639.
Salvador, P., Naranjo, V., Insa, R., & Teixeira, P. (2016). Axlebox accelerations: Their acquisition and time–frequency characterisation for railway track monitoring purposes. Measurement, 82, 301–312. doi:10.1016/j.measurement.2016.01.012
Santos, G. F. M. dos, & Barbosa, R. S. (2016). Safety analysis of a railway car under the periodic excitation from the track. Cogent Engineering, 3(1), 1263027. doi:10.1080/23311916.2016.1263027
Sato, Y., & Umehara, T. (1987). Track maintenance engineering. Japão: JRCEA.
Selig, E. T., & Waters, J. M. (1994). Track Geotechnology and Substructure Management. Thomas Telford Publishing. doi:10.1680/tgasm.20139
Valinho, M. N., Cescon, J. T. A. M., Simoni, A. P. R., & Zambrotti, L. de L. P. (2020). Socioeconomic impacts with the implementation of the railroad EF-118 RJ/ES: comparison of cargo logistics at the Port of Açu. Research, Society and Development, 9(9), e995998389. doi:10.33448/rsd-v9i9.8389
Vlakhova, A. V. (2015). Risk assessment of flange climb derailment of a rail vehicle. Mechanics of Solids, 50(1), 19–32. doi:10.3103/S0025654415010033
Wang, W., & Li, G. (2012). Development of high-speed railway vehicle derailment simulation – Part II: Exploring the derailment mechanism. Engineering Failure Analysis, 24, 93–111. doi:10.1016/j.engfailanal.2012.02.001
Zeng, J., & Wu, P. (2008). Study on the wheel/rail interaction and derailment safety. Wear, 265(9–10), 1452–1459. doi:10.1016/j.wear.2008.01.031
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 João Bosco de Lima; Luis Antônio Silveira Lopes; Luiz Augusto Cavalcante Moniz de Aragão Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.