Analysis of constructive parameters in the thermal performance of solar still: Review
DOI:
https://doi.org/10.33448/rsd-v10i6.15472Keywords:
Brackish water; Desalination; Potability.Abstract
The solar desalinator is a viable and low-cost technology for using energy from the sun. In addition, it is resistant to high temperatures, obtaining reasonable amounts of water. The objective of this work is to present the influence of climatic, operational and design parameters on the thermal performance and productivity of the solar desalinator. To satisfy this objective, a sequential description of the factors that interfere with the solar distillation process was chosen. The results indicated that solar desalination is affected by the evaporation area, water depth and the desalination cover angle. The isolation of the desalination system positively affected productivity, because it increased the heating capacity and the evaporative effects within the desalinator. It was also found that the performance of the desalinator was improved by increasing solar radiation, ambient air temperature, initial water temperature in the tray and wind speed. In addition, performance is associated with the thermal conductivity of the materials used in the desalinator, a high productivity rate can be achieved using thermal absorbent materials, such as the use of fins, nano fluids and sponges integrated in the desalinator. Therefore, it was possible to conclude that the climatic, operational and design parameters inherent to the solar desalinator, are determining factors to improve the productivity of desalinated water.
References
Abujazar, M. S. S., Fatihah, S., Rakmi, A. R., & Shahrom, M. Z. (2016). The effects of design parameters on productivity performance of a solar still for seawater desalination: A review. Desalination, 385, 178-193.
Abdallah, S., Badran, O., & Abu-Khader, M. M. (2018). Performance evaluation of a modified design of a single slope solar still. Desalination, 219(1-3), 222-230.
Ahmed, H. M., & Alfaylakawi, K. A. (2012). Productivity enhancement of conventional solar stills using water sprinklers and cooling fan. Journal of Advanced Science and Engineering Research, 2(3), 168-177.
Ahmed, F. E., Hashaikeh, R., & Hilal, N. (2019). Solar powered desalination–Technology, energy and future outlook. Desalination, 453, 54-76.
Ahsan, A., Imteaz, M., Thomas, U. A., Azmi, M., Rahman, A., & Daud, N. N. (2014). Parameters affecting the performance of a low cost solar still. Applied energy, 114, 924-930.
Almuhanna, E. A. (2014). Evaluation of single slop solar still integrated with evaporative cooling system for brackish water desalination. Journal of Agricultural Science, 6(1), 48.
Al-Garni, A. Z. (2012). Enhancing the solar still using immersion type water heater productivity and the effect of external cooling fan in winter. Applied Solar Energy, 48(3), 193-200.
Al-Karaghouli, A. A., & Alnaser, W. E. (2016). Experimental comparative study of the performances of single and double basin solar-stills. Applied Energy, 77(3), 317-325.
Al-Hinai, H., Al-Nassri, M. S., & Jubran, B. A. (2002). Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Conversion and Management, 43(13), 1639-1650.
Arunkumar, T., Jayaprakash, R., Denkenberger, D., Ahsan, A., Okundamiya, M. S., Tanaka, H., & Aybar, H. Ş. (2012). An experimental study on a hemispherical solar still. Desalination, 286, 342-348..
Attia, M. E. H., Driss, Z., Manokar, A. M., & Sathyamurthy, R. (2020). Effect of aluminum balls on the productivity of solar distillate. Journal of Energy Storage, 30, 101466.
Bhatacharyya, A. (2013). Solar still for desalination of water in rural household. International Journal of Environment and Sustain ability, 2(1), 21-30.
Elango, T., Kannan, A., & Murugavel, K. K. (2015). Performance study on single basin single slope solar still with different water nanofluids. Desalination, 360, 45-51.
El-Sebaii, A. A., & El-Bialy, E. (2015). Advanced designs of solar desalination systems: A review. Renewable and Sustainable Energy Reviews, 49, 1198-1212.
El-Samadony, Y. A. F., & Kabeel, A. E. (2014). Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still. Energy, 68, 744-750.
Gupta, B., Sharma, R., Shankar, P., & Baredar, P. (2016). Performance enhancement of modified solar still using water sprinkler: An experimental approach. Perspectives in Science, 8, 191-194.
Ghoneyem, A., & Ileri, A. (1997). Software to analyze solar stills and an experimental study on the effects of the cover. Desalination, 114(1), 37-44.
Hamed, M. H., Kabeel, A. E., Omara, Z. M., & Sharshir, S. W. (2015). Mathematical and experimental investigation of a solar humidification–dehumidification desalination unit. Desalination, 358, 9-17.
Kabeel, A. E., & El-Agouz, S. A. (2011). Review of researches and developments on solar stills. Desalination, 276(1-3), 1-12.
Kabeel, A. E., Sathyamurthy, R., Sharshir, S. W., Muthumanokar, A., Panchal, H., Prakash, N., & El Kady, M. S. (2019). Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint. Journal of Cleaner Production, 213, 185-191.
Kabeel, A. E., Sathyamurthy, R., Manokar, A. M., Sharshir, S. W., Essa, F. A., & Elshiekh, A. H. (2020). Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM's) for fresh water production. Journal of Energy Storage, 28, 101204.
Khalifa, A. J. N., & Ali, M. A. (2015). Indoor tests on the effect of wind speed on still performance. International Journal of Energy and Environment, 6(3), 299.
Khalifa, A. J. N., & Hamood, A. M. (2009). On the verification of the effect of water depth on the performance of basin type solar stills. Solar Energy, 83(8), 1312-1321.
Kumar, S., & Dwivedi, V. K. (2015). Experimental study on modified single slope single basin active solar still. Desalination, 367, 69-75.
Luo, T., Young, R., & Reig, P. (2015). Aqueduct projected water stress country rankings. Technical Note.
Madhukeshwara, N., & Prakash, E. S. (2012). An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings. International Journal of Energy & Environment, 3(1).
Manokar, A. M., Murugavel, K. K., & Esakkimuthu, G. (2014). Different parameters affecting the rate of evaporation and condensation on passive solar still–A review. Renewable and Sustainable Energy Reviews, 38, 309-322.
Morse, RN e Read, WRW (1968). Uma base racional para o desenvolvimento de engenharia de um destilador solar. Energia solar, 12 (1), 5-17.
Muftah, A. F., Alghoul, M. A., Fudholi, A., Abdul-Majeed, M. M., & Sopian, K. (2014). Factors affecting basin type solar still productivity: A detailed review. Renewable and Sustainable Energy Reviews, 32, 430-447.
Murugavel, K. K., Chockalingam, K. K., & Srithar, K. (2008). Progresses in improving the effectiveness of the single basin passive solar still. Desalination, 220(1-3), 677-686.
Murugavel, K. K., Sivakumar, S., Ahamed, J. R., Chockalingam, K. K., & Srithar, K. (2010). Single basin double slope solar still with minimum basin depth and energy storing materials. Applied energy, 87(2), 514-523.
Nafey, A. S., Abdelkader, M., Abdelmotalip, A., & Mabrouk, A. A. (2011). Solar still productivity enhancement. Energy conversion and management, 42(11), 1401-1408.
Nafey, A. S., Abdelkader, M., Abdelmotalip, A., & Mabrouk, A. A. (2012). Enhancement of solar still productivity using floating perforated black plate. Energy Conversion and Management, 43(7), 937-946.
Omara, Z. M., Kabeel, A. E., & Younes, M. M. (2013). Enhancing the stepped solar still performance using internal reflectors. Desalination, 314, 67-72.
Onu, United Nations Environment Programme (2020, Fevereiro). http://www.unep.org/themes/freshwater.html.
Panchal, H. N., & Patel, S. (2017). An extensive review on different design and climatic parameters to increase distillate output of solar still. Renewable and Sustainable Energy Reviews, 69, 750-758.
Panchal, H. N. (2015). Enhancement of distillate output of double basin solar still with vacuum tubes. Journal of King Saud University-Engineering Sciences, 27(2), 170-175.
Prakash, P., & Velmurugan, V. (2015). Parameters influencing the productivity of solar stills–A review. Renewable and sustainable energy reviews, 49, 585-609.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica Ed (pp. 3-9). UFSM. https://repositorio. ufsm. br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica. pdf.
Rajaseenivasan, T., & Srithar, K. (2016). Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis. Desalination, 380, 66-74.
Sathyamurthy, R., Kennady, H. J., Nagarajan, P. K., & Ahsan, A. (2014). Factors affecting the performance of triangular pyramid solar still. Desalination, 344, 383-390.
Salem, M. R., Salem, M. R., Higazy, M. G., & Abdrabbo, M. F. (2020). Performance enhancement of a solar still distillation unit: A field investigation. Solar Energy, 202, 326-341.
Selvaraj, K., & Natarajan, A. (2018). Factors influencing the performance and productivity of solar stills-A review. Desalination, 435, 181-187.
Setoodeh, N., Rahimi, R., & Ameri, A. (2011). Modeling and determination of heat transfer coefficient in a basin solar still using CFD. Desalination, 268(1-3), 103-110.
Shalaby, S. M., El-Bialy, E., & El-Sebaii, A. A. (2016). An experimental investigation of a v-corrugated absorber single-basin solar still using PCM. Desalination, 398, 247-255.
Shang, M., Li, N., Zhang, S., Zhao, T., Zhang, C., Liu, C., & Wang, Z. (2017). Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials, 1(1), 56-61.
Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M. (2010). Science and technology for water purification in the coming decades. Nanoscience and technology: a collection of reviews from nature Journals, 337-346.
Sharshir, S. W., Yang, N., Peng, G., & Kabeel, A. E. (2016). Factors affecting solar stills productivity and improvement techniques: a detailed review. Applied Thermal Engineering, 100, 267-284.
Sharshir, S. W., Peng, G., Wu, L., Yang, N., Essa, F. A., Elsheikh, A. H., & Kabeel, A. E. (2017). Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Applied Thermal Engineering, 113, 684-693.
Sharon, H., & Reddy, K. S. (2015). A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews, 41, 1080-1118.
Singh, H. N., & Tiwari, G. N. (2004). Monthly performance of passive and active solar stills for different Indian climatic conditions. Desalination, 168, 145-150.
Srivastava, P. K., & Agrawal, S. K. (2013). Winter and summer performance of single sloped basin type solar still integrated with extended porous fins. Desalination, 319, 73-78.
Tanaka, H. (2009). Tilted wick solar still with external flat plate reflector: optimum inclination of still and reflector. Desalination, 249(1), 411-415.
Tiwari, A. K., & Tiwari, G. N. (2006). Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition. Desalination, 195(1-3), 78-94.
Tripathi, R., & Tiwari, G. N. (2006). Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction. Solar energy, 80(8), 956-967.
Velmurugan, V., & Srithar, K. (2011). Performance analysis of solar stills based on various factors affecting the productivity—a review. Renewable and sustainable energy reviews, 15(2), 1294-1304.
Vergara, S. C. Métodos de pesquisa em administração. Atlas, 2005
Velmurugan, V., Gopalakrishnan, M., Raghu, R., & Srithar, K. (2018). Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10), 2602-2608.
Vieira, M., & Zouain, D. (2006). Pesquisa qualitativa em administração. (2a ed.), FGV editora.
Yadav, S., & Sudhakar, K. (2015). Different domestic designs of solar stills: A review. Renewable and Sustainable Energy Reviews, 47, 718-731.
Zanganeh, P., Goharrizi, A. S., Ayatollahi, S., & Feilizadeh, M. (2019). Productivity enhancement of solar stills by nano-coating of condensing surface. Desalination, 454, 1-9.
Zheng, H., Chang, Z., Chen, Z., Xie, G., & Wang, H. (2013). Experimental investigation and performance analysis on a group of multi-effect tubular solar desalination devices. Desalination, 311, 62-68.
Zhou, L., Tan, Y., Wang, J., Xu, W., Yuan, Y., Cai, W., & Zhu, J. (2016). 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 10(6), 393-398.
Zhu, G., Xu, J., Zhao, W., & Huang, F. (2016). Constructing black titania with unique nanocage structure for solar desalination. ACS applied materials & interfaces, 8(46), 31716-31721.
Zurigat, Y. H., & Abu-Arabi, M. K. (2004). Modelling and performance analysis of a regenerative solar desalination unit. Applied thermal engineering, 24(7), 1061-1072.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Vanessa Rosales Bezerra; Yohanna Jamilla vilar de Brito; Kênia Kelly Freitas Sarmento; Camilla Soares de Oliveira; Keila Machado de Medeiros; Carlos Antônio Pereira de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.