Home-based telerehabilitation: A review of remote therapy frameworks





Home-based therapy; Telerehabilitation; Exergames; Remote virtual games.


Remote therapy frameworks play the main role in home-based telerehabilitation. These remote therapies are exergames that help in the physical and cognitive rehabilitation of the patient. The objective of this review is to present the frameworks of home-based therapies using exergames and to identify the points that can be improved in the development of future systems. To carry out this research, the criteria of the PRISMA were adopted.  Literature searches were conducted up to April 2021 in the Web of Sicence, Pubmed, Cochrane, Embase and Scopus databases. The search query was: (("game*" OR "exergame*") AND  ("rehabilitation") AND ("remote" OR "telerehabilitation" OR "telemedicine")). We have selected a total of  fourteen  studies. We found five types of frameworks: Client-Server, Web-Based, Layers,  Cloud Based and  Multi users. We identified that it may be advantageous to mix the features of these frameworks to have a cheaper home-based system and prevent the patient from having to purchase more powerful computers. In addition, there are some challenges that need to be studied that will also help reduce costs for the patient:  1) Reduce the need for high processing of exergames on the patient's computer; 2) Prevent the patient from having to purchase expensive external devices for motion tracking.


Adhikari, S., & Stark, D. E. (2017). Video-based eye tracking for neuropsychiatric assessment. Ann. N.Y. Acad. Sci, 1387, 145–152. https://doi.org/10.1111/nyas.13305

Afyouni, I., Murad, A., & Einea, A. (2020). Adaptive Rehabilitation Bots in Serious Games. Sensors, 20(7037). https://doi.org/doi:10.3390/s20247037

Agrawal, S., & Vieira, D. (2013). A survey on Internet of Things: um estudo sobre Internet das Coisas. ABAKÓS, 1(2), 78–95.

Amorim, P., Santos, B. S., Dias, P., Silva, S., & Martins, H. (2020). Serious Games for Stroke Telerehabilitaton of Upper Limb - a Review for Future Research. International Journal of Telerehabilitation, 12(2), 1–12. https://doi.org/10.5195/ijt.2020.6326

Andrade, K. de O., Fernandes, G., Junior, J. M., Roma, V. C., Joaquim, R. C., & Caurin, G. A. P. (2013). Rehabilitation robotics and serious games: An initial architecture for simultaneous players. Biosignals and Biorobotics Conference (BRC), 2013 ISSNIP. https://doi.org/10.1109/BRC.2013.6487455

Bamidis, P. D., Konstantinidis, E., Billis, A. S., & Sioundas, A. (2015). Reviewing Home Based Assistive Technologies. IGI Global. https://doi.org/10.4018/978-1-4666-8234-4.ch017

Bhatt, C., Dey, N., & Ashour, A. S. (2017). Internet of Things and Big Data Technologies for Next Generation Healthcare. Springer. https://doi.org/10.1007/978-3-319-49736-5

Chena, Y., Abelb, K. T., Janecekc, J. T., Chenb, Y., Zhengb, K., & Cramerd, S. C. (2019). Home-based technologies for stroke rehabilitation: A systematic review. International Journal of Medical Informatics, 123, 11–22. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.12.001

Deponti, D., Maggiorini, D., & Palazzi, C. E. (2011). Smartphone’s physiatric serious game. 2011 IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH). https://doi.org/10.1109/SeGAH.2011.6165434

Ghadiyaram, D., Pan, J., & Bovik, A. C. (2017). Learning a Continuous-Time Streaming Video QoE Model. IEEE TRANSACTIONS ON IMAGE PROCESSING. https://doi.org/10.1109/TIP.2018.2790347,

Hoda M., El Saddik A., Phan P., W. E. (2020). Haptics in Rehabilitation, Exergames and Health. https://doi.org/10.1007/978-3-030-34230-2_5. https://doi.org/https://doi.org/10.1007/978-3-030-34230-2_5

Hosseiniravandi, M., Kahlaee, A. H., Karim, H., Ghamkhar, L., & Safdari, R. (2020). Home-based telerehabilitation software systems for remote supervising: a systematic review. Int J Technol Assess Health Care, 36(2), 113–125. https://doi.org/10.1017/S0266462320000021

Karime, A., Al-Osman, H., Alja’am, J. M., Gueaieb, W., & Saddik, A. El. (2012). Tele-Wobble: A Telerehabilitation Wobble Board for Lower Extremity Therapy. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 61(7), 1816–1824.

Krishnan, C., Washabaugh, E. P., & Seetharaman, Y. (2015). A low cost real-time motion tracking approach using webcam technology. J Biomech, 48(3), 544–548. https://doi.org/10.1016/j.jbiomech.2014.11.048

Li, H.-J., & Song, A.-G. (2017). Architectural Design of a Cloud Robotic System for Upper-Limb Rehabilitation with Multimodal Interaction. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 32(2), 258–268. https://doi.org/10.1007/s11390-017- 1720-4

Li, X., Darwich, M., Salehi, M. A., & Bayoumi, M. (2021). A survey on cloud-based video streaming services. In Advances in Computer. Elsevier. https://doi.org/doi.org/10.1016/bs.adcom.2021.01.003

Mantovani, E., Zucchella, C., Bottiroli, S., Federico, A., Giugno, R., Sandrini, G., Chiamulera, C., & Tamburin, S. (2020). Telemedicine and Virtual Reality for Cognitive Rehabilitation: A Roadmap for the COVID-19 Pandemic. Frontiers in Neurology, 1–18. https://doi.org/10.3389/fneur.2020.00926

Martins, J. B. (2016). Webcam motion detection and tracking interfaces for immersive embodied experiences. Técnico Lisboa.

Matamala-Gomez, M., Maisto, M., Montana, J. I., Mavrodiev, P. A., Baglio, F., Rossetto, F., Mantovani, F., Riva, G., & Realdon, O. (2020). The Role of Engagement in Teleneurorehabilitation: A Systematic Review. Frontiers in Neurology, 1–23. https://doi.org/10.3389/fneur.2020.00354

Microsoft. (n.d.). Azure Kinect DK. Retrieved February 1, 2021, from https://azure.microsoft.com/pt-br/services/kinect-dk/

Moher;, D., Liberati;, A., Tetzlaff;, J., & G, D. (2009). Preferred reportingitems for systematic reviews and meta-analyses: the PRISMA statement. BMJ, 339(b2535), 1–8. https://doi.org/http://dx.doi.org/10.1136/bmj.b2535.

Norouzi-Gheidari, N., Hernandez, A., Archambault, P. S., Higgins, J., Poissant, L., & Kairy, D. (2019). Feasibility, Safety and Efficacy of a Virtual Reality Exergame System to Supplement Upper Extremity Rehabilitation Post-Stroke: A Pilot Randomized Clinical Trial and Proof of Principle. International Journal of Environmental Research and Public Health, 17(1). https://doi.org/10.3390/ijerph17010113

Oculos. (2021). Oculos Go. https://www.oculus.com/

Oliver, M., Teruel, M. A., Molina, J. P., Romero-Ayuso, D., & González, P. (2018). Ambient Intelligence Environment for Home Cognitive Telerehabilitation. Sensors, 18, 1–30. https://doi.org/10.3390/s18113671

Paraskevopoulos, I. T., Tsekleves, E., Warland, A., & Kilbride, C. (2016). Virtual Reality-based holistic framework: a tool for participatory development of customised playful therapy sessions for motor rehabilitation. 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES). https://doi.org/10.1109/VS-GAMES.2016.7590378

Pérez-Medina, J.-L., Jimenes-Vargas, K. B., Leconte, L., Villarreal, S., Rybarczyk, Y., & Vanderdonckt, J. (2019). ePHoRt: Towards a Reference Architecture for Tele-Rehabilitation Systems. IEEE Access, 1–18. https://doi.org/10.1109/ACCESS.2019.2927461

Popescu, V. G., Burdea, G. C., Bouzit, M., & Hentz, V. R. (2000). A Virtual-Reality-Based Telerehabilitation System with Force Feedback. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 4(1), 45–51.

Postolache, O., Hemanth, D. J., Alexandre, R., Gupta, D., & Geman, O. (2021). Remote Monitoring of Physical Rehabilitation of Stroke Patients using IoT and Virtual Reality. IEEE Journal on Selected Areas in Communications, 3(2), 562–573. https://doi.org/10.1109/JSAC.2020.3020600

Qusay F. Hassan. (2018). Internet of Things A to Z Technologies and Applications. IEEE press Wiley.

Rego, P. A., Moreira, P. M., Science, C., & Reis, L. P. (2014). A Serious Games Framework for Health Rehabilitation. International Journal of Healthcare Information Systems and Informatics, 9(3), 1–21. https://doi.org/10.4018/ijhisi.2014070101

Reinkensmeyer, D. J., Pang, C. T., Nessler, J. A., & Painter, C. C. (2002). Web-Based Telerehabilitation for the Upper Extremity After Stroke. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 10(2), 102–108.

Sardi, L., Idri, A., & Fernández-Alemán, J. L. (2017). A systematic review of gamification in e-Health. Journal of Biomedical Informatics, 31–48. https://doi.org/http://dx.doi.org/10.1016/j.jbi.2017.05.011

Semmelmann, K., & Weigelt, S. (2018). Online webcam-based eye tracking in cognitive science: A first look. Behav Res, 50, 451–465. https://doi.org/10.3758/s13428-017-0913-7

Shahrestani, S. (2017). Internet of Things and Smart Environments Assistive Technologies for Disability, Dementia, and Aging. Springer. https://doi.org/10.1007/978-3-319-60164-9

Silva, T. D. da, Silva, P. L. da, Valenzuela, E. de J., Dias, E. D., Simcsik, A. O., & Carvalho, M. G. de. (2021). Serious Game Platform as a Possibility for Home-Based Telerehabilitation for Individuals With Cerebral Palsy During COVID-19 Quarantine – A Cross-Sectional Pilot Study. Frontiers in Psychology, 12(622678), 1–15. https://doi.org/doi: 10.3389/fpsyg.2021.622678

Tan, L., & Wang, N. (2010). Future Internet: The Internet of Things. 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), 376–380.

Triandafilou, K. M., Tsoupikova, D., Barry, A. J., Thielbar, K. N., Stoykov, N., & Kamper, D. G. (2018). Development of a 3D, networked multiuser virtual reality environment for home therapy after stroke. Journal of NeuroEngineering and Rehabilitation, 15(88), 1–13. https://doi.org/https://doi.org/10.1186/s12984-018-0429-0

Varela-Aldás, J., Palacios-Navarro, G., Amariglio, R., & García-Magariño, I. (2020). Head-Mounted Display-Based Application for Cognitive Training. Sensors, 20(6052), 1–22. https://doi.org/10.3390/s20226552

Vourvopoulos, A., Faria, A. L., Cameirão, M. S., & Badia, S. B. i. (2013). RehabNet: A Distributed Architecture for Motor and Cognitive Neuro-Rehabilitation -Understanding the Human Brain through Virtual Environment Interaction. 2013 IEEE 15th International Conference on E-Health Networking, Applications and Services (Healthcom 2013), 454–459. https://doi.org/10.1109/HealthCom.2013.6720719

Zedda, A., Gusai, E., Caruso, M., Bertuletti, S., Baldazzi, G., Spanu, S., Riboni, D., Pibiri, A., Monticone, M., Cereatti, A., & Pani, D. (2020). DoMoMEA: a Home-Based Telerehabilitation System for Stroke Patients. Annu Int Conf IEEE Eng Med Biol Soc ., 5773–5776. https://doi.org/doi: 10.1109/EMBC44109.2020.9175742




How to Cite

MIGUEL, G. F. de S.; SÁ, A. A. R. de .; SOUZA, J. T. de; NAVES, E. L. M. Home-based telerehabilitation: A review of remote therapy frameworks. Research, Society and Development, [S. l.], v. 10, n. 6, p. e4910615489, 2021. DOI: 10.33448/rsd-v10i6.15489. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15489. Acesso em: 20 jun. 2021.



Review Article