Telereabilitação domiciliar: Uma revisão dos modelos de terapias à distância
DOI:
https://doi.org/10.33448/rsd-v10i6.15489Palavras-chave:
Terapia domiciliar; Telereabilitação; Exergames; Jogos virtuais remotos.Resumo
Os modelos de terapias remotas desempenham o papel principal na telereabilitação domiciliar. Essas terapias remotas são exergames que ajudam na reabilitação física e cognitiva do paciente. O objetivo desta revisão é apresentar os modelos de terapias domiciliares utilizando exergames e identificar os pontos que podem ser melhorados no desenvolvimento de sistemas futuros. Para a realização desta pesquisa, foram adotados os critérios do PRISMA. As pesquisas de literatura foram realizadas até abril de 2021 nas bases de dados Web of Sicence, Pubmed, Cochrane, Embase e Scopus. A consulta da pesquisa foi: (("game*" OR "exergame*") AND ("rehabilitation") AND ("remote" OR "telerehabilitation" OR "telemedicine")). Selecionamos um total de quatorze estudos. Encontramos cinco tipos de frameworks: Cliente-Servidor, Baseado na Web, Baseado em Camadas, Baseado em Nuvem e Multi usuários. Identificamos que pode ser vantajoso misturar as características desses modelos para ter um sistema doméstico mais barato e evitar que o paciente tenha que comprar computadores mais poderosos. Além disso, existem alguns desafios que precisam ser estudados e que também ajudarão a reduzir custos para o paciente: 1) Reduzir a necessidade do alto processamento de exergames no computador do paciente; 2) Evitar que o paciente tenha que comprar dispositivos externos caros para rastreamento de movimento.
Referências
Adhikari, S., & Stark, D. E. (2017). Video-based eye tracking for neuropsychiatric assessment. Ann. N.Y. Acad. Sci, 1387, 145–152. https://doi.org/10.1111/nyas.13305
Afyouni, I., Murad, A., & Einea, A. (2020). Adaptive Rehabilitation Bots in Serious Games. Sensors, 20(7037). https://doi.org/doi:10.3390/s20247037
Agrawal, S., & Vieira, D. (2013). A survey on Internet of Things: um estudo sobre Internet das Coisas. ABAKÓS, 1(2), 78–95.
Amorim, P., Santos, B. S., Dias, P., Silva, S., & Martins, H. (2020). Serious Games for Stroke Telerehabilitaton of Upper Limb - a Review for Future Research. International Journal of Telerehabilitation, 12(2), 1–12. https://doi.org/10.5195/ijt.2020.6326
Andrade, K. de O., Fernandes, G., Junior, J. M., Roma, V. C., Joaquim, R. C., & Caurin, G. A. P. (2013). Rehabilitation robotics and serious games: An initial architecture for simultaneous players. Biosignals and Biorobotics Conference (BRC), 2013 ISSNIP. https://doi.org/10.1109/BRC.2013.6487455
Bamidis, P. D., Konstantinidis, E., Billis, A. S., & Sioundas, A. (2015). Reviewing Home Based Assistive Technologies. IGI Global. https://doi.org/10.4018/978-1-4666-8234-4.ch017
Bhatt, C., Dey, N., & Ashour, A. S. (2017). Internet of Things and Big Data Technologies for Next Generation Healthcare. Springer. https://doi.org/10.1007/978-3-319-49736-5
Chena, Y., Abelb, K. T., Janecekc, J. T., Chenb, Y., Zhengb, K., & Cramerd, S. C. (2019). Home-based technologies for stroke rehabilitation: A systematic review. International Journal of Medical Informatics, 123, 11–22. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.12.001
Deponti, D., Maggiorini, D., & Palazzi, C. E. (2011). Smartphone’s physiatric serious game. 2011 IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH). https://doi.org/10.1109/SeGAH.2011.6165434
Ghadiyaram, D., Pan, J., & Bovik, A. C. (2017). Learning a Continuous-Time Streaming Video QoE Model. IEEE TRANSACTIONS ON IMAGE PROCESSING. https://doi.org/10.1109/TIP.2018.2790347,
Hoda M., El Saddik A., Phan P., W. E. (2020). Haptics in Rehabilitation, Exergames and Health. https://doi.org/10.1007/978-3-030-34230-2_5. https://doi.org/https://doi.org/10.1007/978-3-030-34230-2_5
Hosseiniravandi, M., Kahlaee, A. H., Karim, H., Ghamkhar, L., & Safdari, R. (2020). Home-based telerehabilitation software systems for remote supervising: a systematic review. Int J Technol Assess Health Care, 36(2), 113–125. https://doi.org/10.1017/S0266462320000021
Karime, A., Al-Osman, H., Alja’am, J. M., Gueaieb, W., & Saddik, A. El. (2012). Tele-Wobble: A Telerehabilitation Wobble Board for Lower Extremity Therapy. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 61(7), 1816–1824.
Krishnan, C., Washabaugh, E. P., & Seetharaman, Y. (2015). A low cost real-time motion tracking approach using webcam technology. J Biomech, 48(3), 544–548. https://doi.org/10.1016/j.jbiomech.2014.11.048
Li, H.-J., & Song, A.-G. (2017). Architectural Design of a Cloud Robotic System for Upper-Limb Rehabilitation with Multimodal Interaction. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 32(2), 258–268. https://doi.org/10.1007/s11390-017- 1720-4
Li, X., Darwich, M., Salehi, M. A., & Bayoumi, M. (2021). A survey on cloud-based video streaming services. In Advances in Computer. Elsevier. https://doi.org/doi.org/10.1016/bs.adcom.2021.01.003
Mantovani, E., Zucchella, C., Bottiroli, S., Federico, A., Giugno, R., Sandrini, G., Chiamulera, C., & Tamburin, S. (2020). Telemedicine and Virtual Reality for Cognitive Rehabilitation: A Roadmap for the COVID-19 Pandemic. Frontiers in Neurology, 1–18. https://doi.org/10.3389/fneur.2020.00926
Martins, J. B. (2016). Webcam motion detection and tracking interfaces for immersive embodied experiences. Técnico Lisboa.
Matamala-Gomez, M., Maisto, M., Montana, J. I., Mavrodiev, P. A., Baglio, F., Rossetto, F., Mantovani, F., Riva, G., & Realdon, O. (2020). The Role of Engagement in Teleneurorehabilitation: A Systematic Review. Frontiers in Neurology, 1–23. https://doi.org/10.3389/fneur.2020.00354
Microsoft. (n.d.). Azure Kinect DK. Retrieved February 1, 2021, from https://azure.microsoft.com/pt-br/services/kinect-dk/
Moher;, D., Liberati;, A., Tetzlaff;, J., & G, D. (2009). Preferred reportingitems for systematic reviews and meta-analyses: the PRISMA statement. BMJ, 339(b2535), 1–8. https://doi.org/http://dx.doi.org/10.1136/bmj.b2535.
Norouzi-Gheidari, N., Hernandez, A., Archambault, P. S., Higgins, J., Poissant, L., & Kairy, D. (2019). Feasibility, Safety and Efficacy of a Virtual Reality Exergame System to Supplement Upper Extremity Rehabilitation Post-Stroke: A Pilot Randomized Clinical Trial and Proof of Principle. International Journal of Environmental Research and Public Health, 17(1). https://doi.org/10.3390/ijerph17010113
Oculos. (2021). Oculos Go. https://www.oculus.com/
Oliver, M., Teruel, M. A., Molina, J. P., Romero-Ayuso, D., & González, P. (2018). Ambient Intelligence Environment for Home Cognitive Telerehabilitation. Sensors, 18, 1–30. https://doi.org/10.3390/s18113671
Paraskevopoulos, I. T., Tsekleves, E., Warland, A., & Kilbride, C. (2016). Virtual Reality-based holistic framework: a tool for participatory development of customised playful therapy sessions for motor rehabilitation. 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES). https://doi.org/10.1109/VS-GAMES.2016.7590378
Pérez-Medina, J.-L., Jimenes-Vargas, K. B., Leconte, L., Villarreal, S., Rybarczyk, Y., & Vanderdonckt, J. (2019). ePHoRt: Towards a Reference Architecture for Tele-Rehabilitation Systems. IEEE Access, 1–18. https://doi.org/10.1109/ACCESS.2019.2927461
Popescu, V. G., Burdea, G. C., Bouzit, M., & Hentz, V. R. (2000). A Virtual-Reality-Based Telerehabilitation System with Force Feedback. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 4(1), 45–51.
Postolache, O., Hemanth, D. J., Alexandre, R., Gupta, D., & Geman, O. (2021). Remote Monitoring of Physical Rehabilitation of Stroke Patients using IoT and Virtual Reality. IEEE Journal on Selected Areas in Communications, 3(2), 562–573. https://doi.org/10.1109/JSAC.2020.3020600
Qusay F. Hassan. (2018). Internet of Things A to Z Technologies and Applications. IEEE press Wiley.
Rego, P. A., Moreira, P. M., Science, C., & Reis, L. P. (2014). A Serious Games Framework for Health Rehabilitation. International Journal of Healthcare Information Systems and Informatics, 9(3), 1–21. https://doi.org/10.4018/ijhisi.2014070101
Reinkensmeyer, D. J., Pang, C. T., Nessler, J. A., & Painter, C. C. (2002). Web-Based Telerehabilitation for the Upper Extremity After Stroke. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 10(2), 102–108.
Sardi, L., Idri, A., & Fernández-Alemán, J. L. (2017). A systematic review of gamification in e-Health. Journal of Biomedical Informatics, 31–48. https://doi.org/http://dx.doi.org/10.1016/j.jbi.2017.05.011
Semmelmann, K., & Weigelt, S. (2018). Online webcam-based eye tracking in cognitive science: A first look. Behav Res, 50, 451–465. https://doi.org/10.3758/s13428-017-0913-7
Shahrestani, S. (2017). Internet of Things and Smart Environments Assistive Technologies for Disability, Dementia, and Aging. Springer. https://doi.org/10.1007/978-3-319-60164-9
Silva, T. D. da, Silva, P. L. da, Valenzuela, E. de J., Dias, E. D., Simcsik, A. O., & Carvalho, M. G. de. (2021). Serious Game Platform as a Possibility for Home-Based Telerehabilitation for Individuals With Cerebral Palsy During COVID-19 Quarantine – A Cross-Sectional Pilot Study. Frontiers in Psychology, 12(622678), 1–15. https://doi.org/doi: 10.3389/fpsyg.2021.622678
Tan, L., & Wang, N. (2010). Future Internet: The Internet of Things. 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), 376–380.
Triandafilou, K. M., Tsoupikova, D., Barry, A. J., Thielbar, K. N., Stoykov, N., & Kamper, D. G. (2018). Development of a 3D, networked multiuser virtual reality environment for home therapy after stroke. Journal of NeuroEngineering and Rehabilitation, 15(88), 1–13. https://doi.org/https://doi.org/10.1186/s12984-018-0429-0
Varela-Aldás, J., Palacios-Navarro, G., Amariglio, R., & García-Magariño, I. (2020). Head-Mounted Display-Based Application for Cognitive Training. Sensors, 20(6052), 1–22. https://doi.org/10.3390/s20226552
Vourvopoulos, A., Faria, A. L., Cameirão, M. S., & Badia, S. B. i. (2013). RehabNet: A Distributed Architecture for Motor and Cognitive Neuro-Rehabilitation -Understanding the Human Brain through Virtual Environment Interaction. 2013 IEEE 15th International Conference on E-Health Networking, Applications and Services (Healthcom 2013), 454–459. https://doi.org/10.1109/HealthCom.2013.6720719
Zedda, A., Gusai, E., Caruso, M., Bertuletti, S., Baldazzi, G., Spanu, S., Riboni, D., Pibiri, A., Monticone, M., Cereatti, A., & Pani, D. (2020). DoMoMEA: a Home-Based Telerehabilitation System for Stroke Patients. Annu Int Conf IEEE Eng Med Biol Soc ., 5773–5776.
https://doi.org/doi: 10.1109/EMBC44109.2020.9175742
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Guilherme Fernandes de Souza Miguel; Angela Abreu Rosa de Sá; Júlia Tannús de Souza; Eduardo Lázaro Martins Naves
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.