Osteogenesis and biofilms formation on titanium surfaces submitted to oxygen plasma immersion ion implantation
DOI:
https://doi.org/10.33448/rsd-v10i6.15644Keywords:
Osteogenesis; Biocompatibility; O-PIII; Biofilm; Titanium alloy.Abstract
The objectives of this study were to characterize titanium (Ti) surfaces treated by ion implantation by immersion in oxygen plasma (O-PIII) at different temperatures, correlating these implanted layers with therapeutic effects and with osteogenesis, as well as the formation of monotypic biofilms microbial. The groups were divided into: a) Ti (pre-treatment) b) Ti O-PIII at 400 ° C. c) Ti O-PIII at 500 ° C. d) Ti O-PIII at 600 ° C. The properties and surface characteristics were evaluated according to the roughness, texture, corrosion resistance, formation of new phases and the identification of chemical compounds present. Cellular analyzes investigated cell interaction, viability, total protein content, alkaline phosphatase and quantification of mineralized nodules using MG-63 cells. The formation of monotypic microbial biofilms, including P. aeruginosa, S. aureus, S. mutans and C. albicans were evaluated. The increase in surface roughness, corrosion resistance and oxygen content, leading to the formation of TiO2-rutile with more intense peaks and in greater numbers according to the increase in the substrate temperature, ionic implanted Ti samples was observed. There was also a significant increase in cell viability, total protein production, alkaline phosphatase activity and formation of mineralization nodules for the group treated with O-PIII at 600ºC compared to other groups, in addition to a reduction of microorganisms in the groups treated with O- PIII. Therefore, treatment with O-PIII at 600ºC in Ti grade IV showed favorable results for its use.
References
Aguayo, S., Donos, N., Spratt, D., & Bozec, L. (2015). Nanoadhesion of staphylococcus aureus onto titanium implant surfaces. Journal of dental research, 94, 1078–1084. https://doi.org/10.1177/0022034515591485
Andrade, D. P., Vasconcellos, L. M., Carvalho, I. C., Forte, L. F., Souza Santos, E. L.,& Prado, R. F, et al.(2015) Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study. Material science and engineer C, 56:538±44. https://doi.org/10.1016/j.msec.2015.07.026
Baranowski, A., Klein, A., Ritz, U., Ackermann, A., Anthonissen, J., Kaufmann, K. B., Brendel, C., Götz, H., Rommens, P. M., & Hofmann, A. (2016). Surface functionalization of orthopedic titanium implants with bone sialoprotein. PLoS one. https://doi.org/10.1371/journal.pone.0153978
Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F., Ferriols, N.S., Bogdanoff, P., & Pereira, E.C. (2000). Doubling exponent models for the analysis of porous film electrodes by impedance: relaxation of TiO2 nanoporous in aqueous solution. The journal of physical chemistry B, 104 (10), 2287–2298. https://doi.org/10.1021/jp993148h
Cheng, A., Goodwin, W. B., de Glee, B. M., Gittens, R. A., Vernon, J. P., Hyzy, S. L., & et al. (2018). Surface modification of bulk titanium substrates for biomedical applications via low‐temperature microwave hydrothermal oxidation. Journal of biomedical materials research, 106, 782-796; https://doi.org/10.1002/jbm.a.36280
Da Silva, M. M., Ueda, M., Otani, C., Reuther, H., Lepienski, C. M., Junior, P. C. S., & Otubo, J. (2006). Hybrid processing of Ti-6Al-4V using plasma immersion ion implantation combined with plasma nitriding. Materials Research, 9(1). https://doi.org/10.1590/S1516-14392006000100018
Do Prado, R. F., de Vasconcellos, L. G. O., de Vasconcellos, L. M. R., Cairo, C. A. A., Leite, D. O., dos Santos, A., Jorge. A. O., Romeiro. R. L., Balducci,I.,& Carvalho,Y. R. (2013). In vivo osteogenesis and in vitro Streptococcus mutans adherence: porous-surfaced cylindrical implants vs rough-surfaced threaded implants. International journal oral maxillofacial implants, 28(6),1630–8. https://doi.org/10.11607/jomi.2747
do Prado, R. F., Esteves, G. C., Santos, E., Bueno, D., Cairo, C., Vasconcellos, L., Sagnori, R. S., Tessarin, F., Oliveira, F. E., Oliveira, L. D., Villaça-Carvalho, M., Henriques, V., Carvalho, Y. R., & De Vasconcellos, L. (2018). In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PloS one, 13(5), e0196169. https://doi.org/10.1371/journal.pone.0196169
Fatani, E. J., Almutairi, H. A., Alharbi, A. O., Alnakhli, Y. O., Divakar, D. D., Muzaheed Alkheraif, A. A., & Khan, A. A. (2017). In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Microbial pathogenesis,112, 190-194. https://doi.org/10.1016/j.micpath.2017.09.052
Gehrke, S. A., Dedavid, B. A., Júnior, J. S. A., Pérez-Díaz, L., Guirado, J. L. C., Canales, P. M., & De Aza, P. N. (2018). Effect of different morphology of titanium surface on the bone healing in defects filled only with blood clot: a new animal study design. BioMed research international, 9. https://doi.org/10.1155/2018/4265474
Giannelli, M., Landini, G., Materassi, F., Chellini, F., Antonelli, A., Tani, A., Zecchi-Orlandini, S., Rossolini, G. M., & Bani, D.(2016). The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants: an in vitro study. Lasers in medical science, 31(8), 1613–1619. https://doi.org/10.1007/s10103-016-2025-5
Gimmel'farb, A. L., & Abrarov, V. B. (1980). Opyt primeneniia konstruktsii iz titanovykh splavov v ortopedo-travmatologicheskoĭ klinike [Experience in the use of titanium alloy devices in an orthopedic traumatological clinic]. Meditsinskaia tekhnika, (3), 55–57.
Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414, 338–344. https://doi.org/10.1038/35104607
Guan, B. Y., & Lou, X. W. (2018). Asymmetric mesoporous rutile TiO2 microspheres with single crystal-like frameworks. Chemistry, (4),(10), 2264-2266. https://doi.org/10.1016/j.chempr.2018.09.023
Guglielmotti, M. B., Domingo, M. G., Steimetz, T., Ramos, E., Paparella, M. L., & Olmedo, D. G. (2015). Migration of titanium dioxide microparticles and nanoparticles through the body and deposition in the gingiva: an experimental study in rats. European journal of oral sciences, 123(4), 242–248. https://doi.org/10.1111/eos.12190
Gupta, D. (2011). Plasma immersion ion implantation (PIII) process: physics and technology. International Journal of Advancements in Technology, 2(4).
Hansen, A. W., Beltrami, L. V. R., Antonini, L. M., Villarinho, D. J., das Neves, J. C. K., Marino, C. E. B., & Malfatti, C.F. (2015). Oxide formation on NiTi surface: influence of the heat treatment time to achieve the shape memory. Materials Research, 18 (5). https://doi.org/10.1590/1516-1439.022415
Heringa, M. B., Peters, R., Bleys, R., van der Lee, M. K., Tromp, P. C., van Kesteren, P., van Eijkeren, J., Undas, A. K., Oomen, A. G., & Bouwmeester, H. (2018). Detection of titanium particles in human liver and spleen and possible health implications. Particle and fibre toxicology, 15(1), 15. https://doi.org/10.1186/s12989-018-0251-7
Hung, W. C., Chang, F. M., Yang, T. S., Ou, K. L., Lin, C. T., & Peng, P. W. (2016). Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications. Materials science and engineering: C. 68, 523-529. https://doi.org/10.1016/j.msec.2016.06.024
Izquierdo-Barba, I., García-Martín, J. M., Álvarez, R., Palmero, A., Esteban, J., Pérez-Jorge, C., Arcos, D., & Vallet-Regí, M. (2015). Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation. Acta Biomaterialia ,15, 20–28. https://doi.org/10.1016/j.actbio.2014.12.023
Jeyachandran, Y. L., Venkatachalam, S., Karunagaran, B., Narayandass, S. K., Mangalaraj, D., Bao, C. Y., & Zhang, C. L. (2007). Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films. Materials science and engineering C, 35–41. https://doi.org/10.1016/j.msec.2006.01.004
Kasnak, G., Fteita, D., Jaatinen, O., Könönen, E., Tunali, M., Gürsoy, M., & Gürsoy, U. K. (2019) Regulatory effects of PRF and titanium surfaces on cellular adhesion, spread, and cytokine expressions of gingival keratinocytes. Histochemistry and Cell Biology, 1–11. https://doi.org/10.1007/s00418-019-01774-8
Kiran, A. S. K., Kumar, T. S. S., Perumal, G., Sanghavi, R., Doble, M., & Ramakrishna, S. (2018). Dual nanofibrous bioactive coating and antimicrobial surface treatment for infection resistant titanium implants. Progress in organic coatings, 121, 112-119. https://doi.org/10.1016/j.porgcoat.2018.04.028
Kohavi, D., Badihi, L., Rosen, G., Steinberg, D., & Sela, M. N. (2013). An in vivo method for measuring the adsorption of plasma proteins to titanium in humans. Biofouling, 29(10), 1215–1224. https://doi.org/10.1080/08927014.2013.834332
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275
Mandl, S., Krause, D., Thorwarth, G., Sader, R., Zeilhofer, F., Horch, H. H., & Rauschenbach, G. (2001). Biocompatibility of titanium based implants treated with plasma immersion ion implantation. Surface and coatings technology, 142, 1046-1050.https://doi.org/10.1016/S0168-583X(03)00813-9
Mandl, S., Sader, R., Thorwarth, G., Krause, D., Zeilhofer, H. F., Horch, H. H., & Rauschenbach, B. (2002). Investigation on plasma immersion ion implantation treated medical implants. Biomolecular Engineering, 19, 129–132.https://doi.org/10.1016/S1389-0344(02)00025-4
Mello, D. C. R., de Oliveira, J. R., Cairo, C. A. A., Ramos, L. S. B., Vegian, M. R. C., de Vasconcellos, L. G. O., de Oliveira, F. E., de Oliveira, L. D., de Vasconcellos, L. M. R. (2019). Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response. Journal of Materials Science: Materials in Medicine, 30(9), 108.httpp://doi.org.10.1007/s10856-019-6310-2
Mohan, L., Chakraborty, M., Viswanathan, S., Mandal, C., Bera, P., Aruna, S.T., & Anandana, C. (2017). Corrosion, wear, and cell culture studies of oxygen ion implanted Ni–Ti alloy. Surface interface analysis, 49, 828–836. https://doi.org/10.1002/sia.6229.
Morais, M. N., Silveira,W. C., Teixeira, L. E. M., & Araújo, I. D.(2013). Mechanisms of bacterial adhesion to biomaterials. Revista de medicina de Minas Gerais, 23(1), 96-101. https://doi.org/ 10.5935/2238-3182.20130015
Munoz-Castro, A. E., Lopez-Callejas, R., Granda- Gutierrez, E. E., Valencia-Alvarado, R., Barocio, S. R., Pena-Eguiluz, R., Mercado-Cabrera, A., & De la Piedad Beneitez, A. (2009). Ion implantation of oxygen and nitrogen in cpti. Progress in Organic Coatings, 64, 259–263.https://doi.org/10.1016/j.porgcoat.2008.08.021
Nunes Filho, A., Aires, M. M., Braz, D. C., Hinrichs, R., Macedo, A. J., & Alves, C. Jr. (2018). Titanium surface chemical composition interferes in the pseudomonas aeruginosa biofilm formation. Artificial organs, 42(2),1991193–1992018. https://doi.org/doi:10.1111/aor.12983
Oliveira, R. M., Gonçalves, J. A. N., Ueda, M., Rossi, J. O., & Rizzo, P. N. (2010). A new high-temperature plasma immersion ion implantation system with electron heating. Surface and coatings technology, 22(6), 3009-3012. https://doi.org/10.1016/j.surfcoat.2010.03.014
Oliveira, R. M., Mello, C. B., Silva, G., Golçalves, J. A. N., Ueda, M., & Pichon, L. (2011). Improved properties of Ti6Al4V by means of nitrogen high temperature plasma based ion implantation. Surface and coatings technology, 205, S111-S114. https://doi:10.1016/j.surfcoat.2011.03.029
Pan, J., Thierry, D., & Leygraf, C. (1994). Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide. Journal of biomedical materials research, 28(1), 113–122. https://doi.org/10.1002/jbm.820280115
Peláez-Abellán, E., Duarte, L. T., Biaggio, S. R., Rocha-Filho, R. C., & Bocchi, N. (2012). Modification of the titanium oxide morphology and composition by a combined chemical-electrochemical treatment on cp Ti. Materials Research, 15(1). São Carlos. https://doi.org/10.1590/S1516-14392012005000002
Rafieian, D., Ogieglo, O., Savenije, T., & Lammertink, R.G.H. (2015). Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering. AIP Advances, 5(9),097168. https://doi.org/10.1063/1.4931925
Ramasamy, M., & Lee, J. (2016). Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research International. https://doi.org/10.1155/2016/1851242
Ren, N., Zhang, S., Li, Y., Shen, S., Niu, Q., Zhao, Y., & Kong, L. (2014). Bone mesenchymal stem cell functions on the hierarchical micro/nanotopographies of the Ti-6Al-7Nb alloy. British journal of oral and maxillofacial surgery, 52(10), 907-912. https://doi.org/10.1016/j.bjoms.2014.08.022
Rossi, J. O., Ueda, M., & Barroso, J. J. (2004). Pulsed power modulators for surface treatment by plasma immersion ion implantation. Brazilian Journal of Physics, 34(4b), 1565-1571. https://doi.org/10.1590/S0103-97332004000800011
Sasahara, A., Murakami,T., & Tomitori, M. (2018). Dependence of calcium phosphate formation on nanostructure of rutile TiO2(110) surfaces. Japanese journal of applied physics, 57(11). https://doi.org/10.1021/acs.jpcc.6b05661
Savonov, G. S., Ueda, M., Oliveira, R. M., & Otani, C. (2011). Electrochemical behavior of the Ti6Al4V alloy implanted by nitrogen PIII. Surface and coatings technology, 206, 2017-2020. https://doi:10.1016/j.surfcoat.2011.09.007
Sidambe, A.T. (2014). Biocompatibility of advanced manufactured titanium implants: a review. Materials, vol (7), pages 8168-8188. ISSN 1996-1944. https:// doi.org/10.3390/ma7128168
Soares,T. P., Garcia, C. S. C., Roesch-Ely, M., da Costa, M. E. H. M., Aguzzoli, C., & Giovanela, M. (2018). Cytotoxicity and antibacterial efficacy of silver deposited onto titanium plates by low-energy ion implantation. Journal of materials research, 33(17). https://doi.org/10.1557/jmr.2018.200
Thelen, S., Barthelat, F., & Brinson, L. C. (2004). Mechanics considerations for microporous titanium as an orthopedic implant material. Journal of biomedical materials research. Part A, 69(4), 601–610. https://doi.org/10.1002/jbm.a.20100
Tóth, A., Mohai, M., Ujvári, T., Bell, T., Dong, H., & Bertóti, I. (2004). Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy. Surface and coatings technology, 186 (1), 248-254.https://doi.org/10.1016/j.surfcoat.2004.04.031
Tsang, C. S., Ng, H., & McMillan, A.S. (2007). Antifungal susceptibility of Candida albicans biofilms on titanium discs with different surface roughness. Clinical oral investigations, 11(4),361-368. https://doi.org/10.1007/s00784-007-0122-3
Ueda, M., Silva, M. M., Lepienski, C. M., Soares, P. C., Gonçalves, J. N., & Reuther, H. (2007). High temperature plasma immersion ion implantation of Ti6Al4V. Surface and coatings technology, 201, 4953-56. https://doi.org/10.1016/j.surfcoat.2006.07.074
Ureña, J., Tsipas, S., Jiménez-Morales, A., Gordo, E., Detsch, R., Boccaccini, A.nR. (2018). Cellular behaviour of bone marrow stromal cells on modified Ti-Nb surfaces. Materials and design, 140, 452-59. https://doi.org/10.1016/j.matdes.2017.12.006
Valencia-Alvarado, R., Lopez-Callejas, R., Barocio, S. R., Mercado-Cabrera, A., Pena-Eguiluz, R., Munoz-Castro, A. E., De la Piedad-Beneitez, A., & De la Rosa-Vazquez, J. M. (2010). TiO2 films in the rutile and anatase phases produced by inductively coupled rf plasmas. Surface and coatings technology, 204, 3078–3081.https://doi.org/10.1016/j.surfcoat.2010.02.059
Vargas-Blanco, D., Lynn, A., Rosch, J., Noreldin, R., Salerni, A., Lambert, C., & Rao, R. P. (2017). A pre-therapeutic coating for medical devices that prevents the attachment of Candida albicans. Annals of clinical microbiology and antimicrobials, 16-41. https://doi.org/10.1186/s12941-017-0215-z
Wu, S., Altenried, S., Zogg, A., Zuber, F., Maniura-Weber, K., & Ren, Q. (2018). Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation. ACS Omega, 3 (6), 6456–6464. https://doi.org/10.1021/acsomega.8b00769.
Xiao, Y., Wu, J., Yue, G., Reuther, H., & Lin J. (2012). The surface treatment of Ti meshes for use in large-area flexible dye-sensitized solar cells. Journal of power sources, 208, 197–202. https://doi.org/10.1016/j.jpowsour.2012.02.019
Yamagami, A., Nagaoka, N., Yoshihara, K., Nakamura, M., Shirai, H., Matsumoto, T., Suzuki, K., & Yoshida, Y. (2014). Ultra-structural evaluation of an anodic oxidated titanium dental implant. Dental materials journal, 33(6), 828–834. https://doi.org/10.4012/dmj.2014-121
Yang, C. H., Li, Y. C., Tsai, W. F., Ai, C. F., Huang, H. H. (2015). Oxygen plasma immersion ion implantation treatment enhances the human bone marrow mesenchymal stem cells responses to titanium surface for dental implant application. Clinical oral implants research, 26, 166–175.https://doi.org/10.1111/clr.12293
Zaatreh, S., Wegner, K., Strauß, M., Pasold, J., Mittelmeier, W., Podbielski, A., Kreikemeyer, B., & Bader, R. (2016). Co-Culture of S. epidermidis and human osteoblasts on implant surfaces: an advanced in vitro model for implant-associated infections. PLoS one, 11(3), e0151534. https://doi.org/10.1371/journal.pone.0151534
Zhao, B., Van der Mei, H. C., Rustema-Abbing, M., Busscher, H. J., & Ren, Y. (2015). Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro. International journal oral science. https://doi.org/10.1038/ijos.2015.45
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Italo Rigotti Pereira Tini; Juliani Caroline Ribeiro de Araújo; Thais Fernanda Gonçalves; Rogerio de Moraes Oliveira; Danieli Aparecida Pereira Reis; Adriano Gonçalves dos Reis; Luana Marotta Reis de Vasconcellos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.