Osteogénesis y formación de biofilms en superficies de titanio sometidas a implantación de iones por inmersión en plasma de oxígeno

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i6.15644

Palabras clave:

Osteogénesis; Biocomtibilidad; O-PIII; Beiopelícula; Aleación de titanio.

Resumen

Los objetivos de este estudio fueron caracterizar superficies de titanio (Ti) tratadas mediante implantación de iones por inmersión en plasma de oxígeno (O-PIII) a diferentes temperaturas, correlacionando estas capas implantadas con efectos terapéuticos y con osteogénesis, así como la formación de biofilms monotípicos microbianos. Los grupos se dividieron en: a) Ti (pretratamiento) b) Ti O-PIII a 400 ° C c) Ti O-PIII a 500 ° C d) Ti O-PIII a 600 ° C. Las propiedades y se evaluaron las características superficiales según rugosidad, textura, resistencia a la corrosión, formación de nuevas fases e identificación de compuestos químicos presentes. Los análisis celulares investigaron la interacción celular, la viabilidad, el contenido total de proteínas, la fosfatasa alcalina y la cuantificación de nódulos mineralizados utilizando células MG-63. Se evaluó la formación de biofilms microbianos monotípicos, incluidas P. aeruginosa, S. aureus, S. mutans y C. albicans. Se observó el aumento de la rugosidad superficial, la resistencia a la corrosión y el contenido de oxígeno, lo que dio lugar a la formación de TiO2-rutilo con picos más intensos y en mayor número según el aumento de la temperatura del sustrato, se observaron muestras de Ti implantado iónico. También hubo un aumento significativo de la viabilidad celular, producción total de proteínas, actividad de la fosfatasa alcalina y formación de nódulos de mineralización para el grupo tratado con O-PIII a 600 ° C en comparación con otros grupos, además de una reducción de microorganismos en los grupos tratados con O - PIII. Por tanto, el tratamiento con O-PIII a 600ºC em Ti grado IV mostró resultados favorables para su uso.

Citas

Aguayo, S., Donos, N., Spratt, D., & Bozec, L. (2015). Nanoadhesion of staphylococcus aureus onto titanium implant surfaces. Journal of dental research, 94, 1078–1084. https://doi.org/10.1177/0022034515591485

Andrade, D. P., Vasconcellos, L. M., Carvalho, I. C., Forte, L. F., Souza Santos, E. L.,& Prado, R. F, et al.(2015) Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study. Material science and engineer C, 56:538±44. https://doi.org/10.1016/j.msec.2015.07.026

Baranowski, A., Klein, A., Ritz, U., Ackermann, A., Anthonissen, J., Kaufmann, K. B., Brendel, C., Götz, H., Rommens, P. M., & Hofmann, A. (2016). Surface functionalization of orthopedic titanium implants with bone sialoprotein. PLoS one. https://doi.org/10.1371/journal.pone.0153978

Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F., Ferriols, N.S., Bogdanoff, P., & Pereira, E.C. (2000). Doubling exponent models for the analysis of porous film electrodes by impedance: relaxation of TiO2 nanoporous in aqueous solution. The journal of physical chemistry B, 104 (10), 2287–2298. https://doi.org/10.1021/jp993148h

Cheng, A., Goodwin, W. B., de Glee, B. M., Gittens, R. A., Vernon, J. P., Hyzy, S. L., & et al. (2018). Surface modification of bulk titanium substrates for biomedical applications via low‐temperature microwave hydrothermal oxidation. Journal of biomedical materials research, 106, 782-796; https://doi.org/10.1002/jbm.a.36280

Da Silva, M. M., Ueda, M., Otani, C., Reuther, H., Lepienski, C. M., Junior, P. C. S., & Otubo, J. (2006). Hybrid processing of Ti-6Al-4V using plasma immersion ion implantation combined with plasma nitriding. Materials Research, 9(1). https://doi.org/10.1590/S1516-14392006000100018

Do Prado, R. F., de Vasconcellos, L. G. O., de Vasconcellos, L. M. R., Cairo, C. A. A., Leite, D. O., dos Santos, A., Jorge. A. O., Romeiro. R. L., Balducci,I.,& Carvalho,Y. R. (2013). In vivo osteogenesis and in vitro Streptococcus mutans adherence: porous-surfaced cylindrical implants vs rough-surfaced threaded implants. International journal oral maxillofacial implants, 28(6),1630–8. https://doi.org/10.11607/jomi.2747

do Prado, R. F., Esteves, G. C., Santos, E., Bueno, D., Cairo, C., Vasconcellos, L., Sagnori, R. S., Tessarin, F., Oliveira, F. E., Oliveira, L. D., Villaça-Carvalho, M., Henriques, V., Carvalho, Y. R., & De Vasconcellos, L. (2018). In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PloS one, 13(5), e0196169. https://doi.org/10.1371/journal.pone.0196169

Fatani, E. J., Almutairi, H. A., Alharbi, A. O., Alnakhli, Y. O., Divakar, D. D., Muzaheed Alkheraif, A. A., & Khan, A. A. (2017). In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Microbial pathogenesis,112, 190-194. https://doi.org/10.1016/j.micpath.2017.09.052

Gehrke, S. A., Dedavid, B. A., Júnior, J. S. A., Pérez-Díaz, L., Guirado, J. L. C., Canales, P. M., & De Aza, P. N. (2018). Effect of different morphology of titanium surface on the bone healing in defects filled only with blood clot: a new animal study design. BioMed research international, 9. https://doi.org/10.1155/2018/4265474

Giannelli, M., Landini, G., Materassi, F., Chellini, F., Antonelli, A., Tani, A., Zecchi-Orlandini, S., Rossolini, G. M., & Bani, D.(2016). The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants: an in vitro study. Lasers in medical science, 31(8), 1613–1619. https://doi.org/10.1007/s10103-016-2025-5

Gimmel'farb, A. L., & Abrarov, V. B. (1980). Opyt primeneniia konstruktsii iz titanovykh splavov v ortopedo-travmatologicheskoĭ klinike [Experience in the use of titanium alloy devices in an orthopedic traumatological clinic]. Meditsinskaia tekhnika, (3), 55–57.

Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414, 338–344. https://doi.org/10.1038/35104607

Guan, B. Y., & Lou, X. W. (2018). Asymmetric mesoporous rutile TiO2 microspheres with single crystal-like frameworks. Chemistry, (4),(10), 2264-2266. https://doi.org/10.1016/j.chempr.2018.09.023

Guglielmotti, M. B., Domingo, M. G., Steimetz, T., Ramos, E., Paparella, M. L., & Olmedo, D. G. (2015). Migration of titanium dioxide microparticles and nanoparticles through the body and deposition in the gingiva: an experimental study in rats. European journal of oral sciences, 123(4), 242–248. https://doi.org/10.1111/eos.12190

Gupta, D. (2011). Plasma immersion ion implantation (PIII) process: physics and technology. International Journal of Advancements in Technology, 2(4).

Hansen, A. W., Beltrami, L. V. R., Antonini, L. M., Villarinho, D. J., das Neves, J. C. K., Marino, C. E. B., & Malfatti, C.F. (2015). Oxide formation on NiTi surface: influence of the heat treatment time to achieve the shape memory. Materials Research, 18 (5). https://doi.org/10.1590/1516-1439.022415

Heringa, M. B., Peters, R., Bleys, R., van der Lee, M. K., Tromp, P. C., van Kesteren, P., van Eijkeren, J., Undas, A. K., Oomen, A. G., & Bouwmeester, H. (2018). Detection of titanium particles in human liver and spleen and possible health implications. Particle and fibre toxicology, 15(1), 15. https://doi.org/10.1186/s12989-018-0251-7

Hung, W. C., Chang, F. M., Yang, T. S., Ou, K. L., Lin, C. T., & Peng, P. W. (2016). Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications. Materials science and engineering: C. 68, 523-529. https://doi.org/10.1016/j.msec.2016.06.024

Izquierdo-Barba, I., García-Martín, J. M., Álvarez, R., Palmero, A., Esteban, J., Pérez-Jorge, C., Arcos, D., & Vallet-Regí, M. (2015). Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation. Acta Biomaterialia ,15, 20–28. https://doi.org/10.1016/j.actbio.2014.12.023

Jeyachandran, Y. L., Venkatachalam, S., Karunagaran, B., Narayandass, S. K., Mangalaraj, D., Bao, C. Y., & Zhang, C. L. (2007). Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films. Materials science and engineering C, 35–41. https://doi.org/10.1016/j.msec.2006.01.004

Kasnak, G., Fteita, D., Jaatinen, O., Könönen, E., Tunali, M., Gürsoy, M., & Gürsoy, U. K. (2019) Regulatory effects of PRF and titanium surfaces on cellular adhesion, spread, and cytokine expressions of gingival keratinocytes. Histochemistry and Cell Biology, 1–11. https://doi.org/10.1007/s00418-019-01774-8

Kiran, A. S. K., Kumar, T. S. S., Perumal, G., Sanghavi, R., Doble, M., & Ramakrishna, S. (2018). Dual nanofibrous bioactive coating and antimicrobial surface treatment for infection resistant titanium implants. Progress in organic coatings, 121, 112-119. https://doi.org/10.1016/j.porgcoat.2018.04.028

Kohavi, D., Badihi, L., Rosen, G., Steinberg, D., & Sela, M. N. (2013). An in vivo method for measuring the adsorption of plasma proteins to titanium in humans. Biofouling, 29(10), 1215–1224. https://doi.org/10.1080/08927014.2013.834332

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275

Mandl, S., Krause, D., Thorwarth, G., Sader, R., Zeilhofer, F., Horch, H. H., & Rauschenbach, G. (2001). Biocompatibility of titanium based implants treated with plasma immersion ion implantation. Surface and coatings technology, 142, 1046-1050.https://doi.org/10.1016/S0168-583X(03)00813-9

Mandl, S., Sader, R., Thorwarth, G., Krause, D., Zeilhofer, H. F., Horch, H. H., & Rauschenbach, B. (2002). Investigation on plasma immersion ion implantation treated medical implants. Biomolecular Engineering, 19, 129–132.https://doi.org/10.1016/S1389-0344(02)00025-4

Mello, D. C. R., de Oliveira, J. R., Cairo, C. A. A., Ramos, L. S. B., Vegian, M. R. C., de Vasconcellos, L. G. O., de Oliveira, F. E., de Oliveira, L. D., de Vasconcellos, L. M. R. (2019). Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response. Journal of Materials Science: Materials in Medicine, 30(9), 108.httpp://doi.org.10.1007/s10856-019-6310-2

Mohan, L., Chakraborty, M., Viswanathan, S., Mandal, C., Bera, P., Aruna, S.T., & Anandana, C. (2017). Corrosion, wear, and cell culture studies of oxygen ion implanted Ni–Ti alloy. Surface interface analysis, 49, 828–836. https://doi.org/10.1002/sia.6229.

Morais, M. N., Silveira,W. C., Teixeira, L. E. M., & Araújo, I. D.(2013). Mechanisms of bacterial adhesion to biomaterials. Revista de medicina de Minas Gerais, 23(1), 96-101. https://doi.org/ 10.5935/2238-3182.20130015

Munoz-Castro, A. E., Lopez-Callejas, R., Granda- Gutierrez, E. E., Valencia-Alvarado, R., Barocio, S. R., Pena-Eguiluz, R., Mercado-Cabrera, A., & De la Piedad Beneitez, A. (2009). Ion implantation of oxygen and nitrogen in cpti. Progress in Organic Coatings, 64, 259–263.https://doi.org/10.1016/j.porgcoat.2008.08.021

Nunes Filho, A., Aires, M. M., Braz, D. C., Hinrichs, R., Macedo, A. J., & Alves, C. Jr. (2018). Titanium surface chemical composition interferes in the pseudomonas aeruginosa biofilm formation. Artificial organs, 42(2),1991193–1992018. https://doi.org/doi:10.1111/aor.12983

Oliveira, R. M., Gonçalves, J. A. N., Ueda, M., Rossi, J. O., & Rizzo, P. N. (2010). A new high-temperature plasma immersion ion implantation system with electron heating. Surface and coatings technology, 22(6), 3009-3012. https://doi.org/10.1016/j.surfcoat.2010.03.014

Oliveira, R. M., Mello, C. B., Silva, G., Golçalves, J. A. N., Ueda, M., & Pichon, L. (2011). Improved properties of Ti6Al4V by means of nitrogen high temperature plasma based ion implantation. Surface and coatings technology, 205, S111-S114. https://doi:10.1016/j.surfcoat.2011.03.029

Pan, J., Thierry, D., & Leygraf, C. (1994). Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide. Journal of biomedical materials research, 28(1), 113–122. https://doi.org/10.1002/jbm.820280115

Peláez-Abellán, E., Duarte, L. T., Biaggio, S. R., Rocha-Filho, R. C., & Bocchi, N. (2012). Modification of the titanium oxide morphology and composition by a combined chemical-electrochemical treatment on cp Ti. Materials Research, 15(1). São Carlos. https://doi.org/10.1590/S1516-14392012005000002

Rafieian, D., Ogieglo, O., Savenije, T., & Lammertink, R.G.H. (2015). Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering. AIP Advances, 5(9),097168. https://doi.org/10.1063/1.4931925

Ramasamy, M., & Lee, J. (2016). Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research International. https://doi.org/10.1155/2016/1851242

Ren, N., Zhang, S., Li, Y., Shen, S., Niu, Q., Zhao, Y., & Kong, L. (2014). Bone mesenchymal stem cell functions on the hierarchical micro/nanotopographies of the Ti-6Al-7Nb alloy. British journal of oral and maxillofacial surgery, 52(10), 907-912. https://doi.org/10.1016/j.bjoms.2014.08.022

Rossi, J. O., Ueda, M., & Barroso, J. J. (2004). Pulsed power modulators for surface treatment by plasma immersion ion implantation. Brazilian Journal of Physics, 34(4b), 1565-1571. https://doi.org/10.1590/S0103-97332004000800011

Sasahara, A., Murakami,T., & Tomitori, M. (2018). Dependence of calcium phosphate formation on nanostructure of rutile TiO2(110) surfaces. Japanese journal of applied physics, 57(11). https://doi.org/10.1021/acs.jpcc.6b05661

Savonov, G. S., Ueda, M., Oliveira, R. M., & Otani, C. (2011). Electrochemical behavior of the Ti6Al4V alloy implanted by nitrogen PIII. Surface and coatings technology, 206, 2017-2020. https://doi:10.1016/j.surfcoat.2011.09.007

Sidambe, A.T. (2014). Biocompatibility of advanced manufactured titanium implants: a review. Materials, vol (7), pages 8168-8188. ISSN 1996-1944. https:// doi.org/10.3390/ma7128168

Soares,T. P., Garcia, C. S. C., Roesch-Ely, M., da Costa, M. E. H. M., Aguzzoli, C., & Giovanela, M. (2018). Cytotoxicity and antibacterial efficacy of silver deposited onto titanium plates by low-energy ion implantation. Journal of materials research, 33(17). https://doi.org/10.1557/jmr.2018.200

Thelen, S., Barthelat, F., & Brinson, L. C. (2004). Mechanics considerations for microporous titanium as an orthopedic implant material. Journal of biomedical materials research. Part A, 69(4), 601–610. https://doi.org/10.1002/jbm.a.20100

Tóth, A., Mohai, M., Ujvári, T., Bell, T., Dong, H., & Bertóti, I. (2004). Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy. Surface and coatings technology, 186 (1), 248-254.https://doi.org/10.1016/j.surfcoat.2004.04.031

Tsang, C. S., Ng, H., & McMillan, A.S. (2007). Antifungal susceptibility of Candida albicans biofilms on titanium discs with different surface roughness. Clinical oral investigations, 11(4),361-368. https://doi.org/10.1007/s00784-007-0122-3

Ueda, M., Silva, M. M., Lepienski, C. M., Soares, P. C., Gonçalves, J. N., & Reuther, H. (2007). High temperature plasma immersion ion implantation of Ti6Al4V. Surface and coatings technology, 201, 4953-56. https://doi.org/10.1016/j.surfcoat.2006.07.074

Ureña, J., Tsipas, S., Jiménez-Morales, A., Gordo, E., Detsch, R., Boccaccini, A.nR. (2018). Cellular behaviour of bone marrow stromal cells on modified Ti-Nb surfaces. Materials and design, 140, 452-59. https://doi.org/10.1016/j.matdes.2017.12.006

Valencia-Alvarado, R., Lopez-Callejas, R., Barocio, S. R., Mercado-Cabrera, A., Pena-Eguiluz, R., Munoz-Castro, A. E., De la Piedad-Beneitez, A., & De la Rosa-Vazquez, J. M. (2010). TiO2 films in the rutile and anatase phases produced by inductively coupled rf plasmas. Surface and coatings technology, 204, 3078–3081.https://doi.org/10.1016/j.surfcoat.2010.02.059

Vargas-Blanco, D., Lynn, A., Rosch, J., Noreldin, R., Salerni, A., Lambert, C., & Rao, R. P. (2017). A pre-therapeutic coating for medical devices that prevents the attachment of Candida albicans. Annals of clinical microbiology and antimicrobials, 16-41. https://doi.org/10.1186/s12941-017-0215-z

Wu, S., Altenried, S., Zogg, A., Zuber, F., Maniura-Weber, K., & Ren, Q. (2018). Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation. ACS Omega, 3 (6), 6456–6464. https://doi.org/10.1021/acsomega.8b00769.

Xiao, Y., Wu, J., Yue, G., Reuther, H., & Lin J. (2012). The surface treatment of Ti meshes for use in large-area flexible dye-sensitized solar cells. Journal of power sources, 208, 197–202. https://doi.org/10.1016/j.jpowsour.2012.02.019

Yamagami, A., Nagaoka, N., Yoshihara, K., Nakamura, M., Shirai, H., Matsumoto, T., Suzuki, K., & Yoshida, Y. (2014). Ultra-structural evaluation of an anodic oxidated titanium dental implant. Dental materials journal, 33(6), 828–834. https://doi.org/10.4012/dmj.2014-121

Yang, C. H., Li, Y. C., Tsai, W. F., Ai, C. F., Huang, H. H. (2015). Oxygen plasma immersion ion implantation treatment enhances the human bone marrow mesenchymal stem cells responses to titanium surface for dental implant application. Clinical oral implants research, 26, 166–175.https://doi.org/10.1111/clr.12293

Zaatreh, S., Wegner, K., Strauß, M., Pasold, J., Mittelmeier, W., Podbielski, A., Kreikemeyer, B., & Bader, R. (2016). Co-Culture of S. epidermidis and human osteoblasts on implant surfaces: an advanced in vitro model for implant-associated infections. PLoS one, 11(3), e0151534. https://doi.org/10.1371/journal.pone.0151534

Zhao, B., Van der Mei, H. C., Rustema-Abbing, M., Busscher, H. J., & Ren, Y. (2015). Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro. International journal oral science. https://doi.org/10.1038/ijos.2015.45

Descargas

Publicado

03/06/2021

Cómo citar

TINI, I. R. P.; ARAÚJO, J. C. R. de; GONÇALVES, T. F.; OLIVEIRA, R. de M.; REIS, D. A. P.; REIS, A. G. dos; VASCONCELLOS, L. M. R. de . Osteogénesis y formación de biofilms en superficies de titanio sometidas a implantación de iones por inmersión en plasma de oxígeno. Research, Society and Development, [S. l.], v. 10, n. 6, p. e37210615644, 2021. DOI: 10.33448/rsd-v10i6.15644. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15644. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud