Exact solution of the Schrödinger equation for the movement of a particle in a parametric magnetic field
DOI:
https://doi.org/10.33448/rsd-v10i7.16401Keywords:
Schrödinger's Equation; Time-dependent quadratic system; Spatio-temporal transformation; Mathieu equation and functions; Resonance and parametric oscillations.Abstract
We solved the Schrödinger equation exactly for a time-dependent quadratic system for a particle that moves under the influence of a magnetic field with parametric oscillation. We apply the decoupling method, which adopts a transformation of Ray-Reid's spatio-temporal coordinates (Nassar, 1990). The fundamental idea of the problem is to obtain a Schrödinger free particle equation. In this way, it was possible to determine the wave function and the probability density of the particle in the form of a parametric vibration function. We show that the regions of stability and instability are determined by the phase space defined by the equation's control parameters. We determined, as an unprecedented result, the discrete values that the magnetic field can assume in terms of Mathieu functions.
References
Abramowitz, M., & Stegun, I. A. Stegun. (1965). Handbook of Mathematical Functions. New York: Dover Publications.
Barros, V. P., Brtka, M., Gammal, A., & Abdullaev, F. Kh. (2005). J. Phys. B: At. Mol. Opt. Phys. 38, 4111.
Bassalo, J. M. F. (1993). Nuovo Cimento 15, 28-33.
Demo, P. (2000). Metodologia do conhecimento científico. São Paulo: Atlas.
Filho, A. Ribeiro., & Vasconcelos, D. S. (1994). Introdução ao Cálculo das Funções Elípticas Jacobianas. Bahia: Ced.
Floquet, M. G. (1883). Sur les equations différentielles linéaires a coefficients périodiques. Ann. Ecole Norm. Sup. 12, 47-89.
Grib, A. A., Mamaev, S. G., & Mostepanenko, V. M. (1994). Vacuum Quantum Effects in Strong Fields. Friedmann Laboratory Publishing.
Gutièrrez, J. C. et al. (2003). Mathieu functions, a visual approach. American Journal of Physics. 71, 233-242.
Jesus, V. L. B., Guimarães, A. P., & Oliveira, I. S. (1999). Classical and quantum mechanics of a charged particle in oscillating eletric and magnetic fields. Brazilian Journal of Physics 29.
Landau, L. D., & Lifshitz, E. M. L. (1971). The Classical Theory of Fields. Moscou: Mir.
Landau, L. D., & Lifshitz, E. M. L. (1977). Quantum Mechanics: Non-relativistic Theory. Course of Theoretical Physics. Londres: Pergamon Press.
Magnus, W., & S. Winkler. (1966). Hill’s equation, Interscience tracts in pure and Applied Mathematics. New York: Wiley-Interscience.
Mathieu, E. L. (1868). Le mouvement vibratoire dúne membrane de forma elliptique. J. de Math. Pures Appl. 13, 137-203.
Nassar, A. B., Botelho, L. C. L., Bassalo, J. M. F., & Alencar, P. T. S. (1990). Physica Scripta 42.
Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscilation. New York: John Wiley and Sons.
Pampolha, J. B. S. (1997). Solução Exata da Equação de Schrödinger Dependente do Tempo via Transformação Espaço-Temporal. Dissertação de Mestrado em Física. Faculdade de Física, Universidade Federal do Pará.
Schmidt, A. G. M. (2019). Exact solutions of Schrödinger equation for a charged particle on a sphere and on a cylinder in uniform eletric and magnetic fields. Physics E 106, 200-207.
Schmidt, A. G. M. (2020). Exact solutions to Schrödinger equation for a charged particle on a torus in uniform eletric and magnetic fields. Brazilian Journal of Physics 50, 419-429.
Silva, C. da R., Pampolha, J. B. S., Alves, J. P. da S., Germano, R., & Júnior, W. P. (2020). Experimento de Física de baixo custo para o Ensino Médio: Estimando a resistividade elétrica de tubos de metais não-ferromagnéticos utilizando ímãs de neodímio e um cronômetro. Research, Society and Development.
Sudiarta, I. W., & Geldart, D. J. W. (2008). Solving the Schrödinger equation for a charged particle in a magnetic field using the finite difference time domain method. Phys. Lett. A 18, 3145.
Tannoudji, C. C., Diu, B., & Laloe, F. (2006). Quantum Mechanics. Paris: Wiley-Interscience.
Wentzel, G. (1981). Z. Phys. 22, 518.
Zanchin, V., Maia, A., Craig., W., & Brandenberger, R. (1998). Phys. Rev. D 57, 4651.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 João Bosco Soares Pampolha Junior; Charles da Rocha Silva; João Paulo da Silva Alves; Renato Germano; Damião Pedro Meira Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.