Exact solution of the Schrödinger equation for the movement of a particle in a parametric magnetic field

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16401

Keywords:

Schrödinger's Equation; Time-dependent quadratic system; Spatio-temporal transformation; Mathieu equation and functions; Resonance and parametric oscillations.

Abstract

We solved the Schrödinger equation exactly for a time-dependent quadratic system for a particle that moves under the influence of a magnetic field with parametric oscillation. We apply the decoupling method, which adopts a transformation of Ray-Reid's spatio-temporal coordinates (Nassar, 1990). The fundamental idea of ​​the problem is to obtain a Schrödinger free particle equation. In this way, it was possible to determine the wave function and the probability density of the particle in the form of a parametric vibration function. We show that the regions of stability and instability are determined by the phase space defined by the equation's control parameters. We determined, as an unprecedented result, the discrete values that the magnetic field can assume in terms of Mathieu functions.

References

Abramowitz, M., & Stegun, I. A. Stegun. (1965). Handbook of Mathematical Functions. New York: Dover Publications.

Barros, V. P., Brtka, M., Gammal, A., & Abdullaev, F. Kh. (2005). J. Phys. B: At. Mol. Opt. Phys. 38, 4111.

Bassalo, J. M. F. (1993). Nuovo Cimento 15, 28-33.

Demo, P. (2000). Metodologia do conhecimento científico. São Paulo: Atlas.

Filho, A. Ribeiro., & Vasconcelos, D. S. (1994). Introdução ao Cálculo das Funções Elípticas Jacobianas. Bahia: Ced.

Floquet, M. G. (1883). Sur les equations différentielles linéaires a coefficients périodiques. Ann. Ecole Norm. Sup. 12, 47-89.

Grib, A. A., Mamaev, S. G., & Mostepanenko, V. M. (1994). Vacuum Quantum Effects in Strong Fields. Friedmann Laboratory Publishing.

Gutièrrez, J. C. et al. (2003). Mathieu functions, a visual approach. American Journal of Physics. 71, 233-242.

Jesus, V. L. B., Guimarães, A. P., & Oliveira, I. S. (1999). Classical and quantum mechanics of a charged particle in oscillating eletric and magnetic fields. Brazilian Journal of Physics 29.

Landau, L. D., & Lifshitz, E. M. L. (1971). The Classical Theory of Fields. Moscou: Mir.

Landau, L. D., & Lifshitz, E. M. L. (1977). Quantum Mechanics: Non-relativistic Theory. Course of Theoretical Physics. Londres: Pergamon Press.

Magnus, W., & S. Winkler. (1966). Hill’s equation, Interscience tracts in pure and Applied Mathematics. New York: Wiley-Interscience.

Mathieu, E. L. (1868). Le mouvement vibratoire dúne membrane de forma elliptique. J. de Math. Pures Appl. 13, 137-203.

Nassar, A. B., Botelho, L. C. L., Bassalo, J. M. F., & Alencar, P. T. S. (1990). Physica Scripta 42.

Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscilation. New York: John Wiley and Sons.

Pampolha, J. B. S. (1997). Solução Exata da Equação de Schrödinger Dependente do Tempo via Transformação Espaço-Temporal. Dissertação de Mestrado em Física. Faculdade de Física, Universidade Federal do Pará.

Schmidt, A. G. M. (2019). Exact solutions of Schrödinger equation for a charged particle on a sphere and on a cylinder in uniform eletric and magnetic fields. Physics E 106, 200-207.

Schmidt, A. G. M. (2020). Exact solutions to Schrödinger equation for a charged particle on a torus in uniform eletric and magnetic fields. Brazilian Journal of Physics 50, 419-429.

Silva, C. da R., Pampolha, J. B. S., Alves, J. P. da S., Germano, R., & Júnior, W. P. (2020). Experimento de Física de baixo custo para o Ensino Médio: Estimando a resistividade elétrica de tubos de metais não-ferromagnéticos utilizando ímãs de neodímio e um cronômetro. Research, Society and Development.

Sudiarta, I. W., & Geldart, D. J. W. (2008). Solving the Schrödinger equation for a charged particle in a magnetic field using the finite difference time domain method. Phys. Lett. A 18, 3145.

Tannoudji, C. C., Diu, B., & Laloe, F. (2006). Quantum Mechanics. Paris: Wiley-Interscience.

Wentzel, G. (1981). Z. Phys. 22, 518.

Zanchin, V., Maia, A., Craig., W., & Brandenberger, R. (1998). Phys. Rev. D 57, 4651.

Published

17/06/2021

How to Cite

PAMPOLHA JUNIOR, J. B. S. .; SILVA, C. da R. .; ALVES, J. P. da S. .; GERMANO, R.; MEIRA FILHO, D. P. . Exact solution of the Schrödinger equation for the movement of a particle in a parametric magnetic field . Research, Society and Development, [S. l.], v. 10, n. 7, p. e16310716401, 2021. DOI: 10.33448/rsd-v10i7.16401. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16401. Acesso em: 23 nov. 2024.

Issue

Section

Education Sciences