Vibrotactile Assistive Technology for the musical education of the deaf

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.16765

Keywords:

Musical education; Deafness; Assistive Technology.

Abstract

The aim of this paper was to analyze the possibilities and limitations of vibrotactile Assistive Technology for the musical education of the deaf. We adopted the assumptions of quantitative research, through the bibliometric approach (Ângulo-Cuentas et al., 2018), as well as those of qualitative research, through the Textual Discursive Analysis (ATD) proposed by Moraes and Galiazzi (2006). The scope of the bibliometric search comprised 721 scientific articles indexed to the PubMed platform. The results showed that the scientific articles that research the intersection of music and deafness deal mainly with cochlear implants, the perception of hearing, tone and speech in human beings of both biological sexes and of varying ages, however, we noted the scarcity of research on the use of vibrotactile Assistive Technology in this area. Thus, after inserting the descriptors tactile or vibrotactile, we analyzed, through ATD, 7 articles indexed to the Pubmed platform and 5 articles indexed to the Web of Science. We conclude that, despite being incipient, the vibrotactile Assistive Technology can contribute to the musical education of the deaf.

Author Biographies

André Leite de Farias, Universidade Católica de Brasília

Doutorando do Programa de Pós-Graduação Stricto Sensu em Educação da Universidade Católica de Brasília.

Ana Keully Gadelha dos Santos Darub, Universidade Federal do Acre

Doutoranda do Programa de Pós-Graduação Stricto Sensu em Educação da Universidade Católica de Brasília.

Pricila Kohls dos Santos, Universidade Católica de Brasília

Professora e pesquisadora permanente do Programa de Pós-Graduação Stricto Sensu em Educação da Universidade Católica de Brasília.

References

Acton, K. & Howarth, C. & Ouchi, M. (2020). Encountering Music Encountering Music: Songs Seen, Felt, and Heard. Canadian Theatre Review. 184. 15. 10.3138/ctr.184.003.

Ângulo-Cuentas, G. L.; Galvis-Lista, E. A.; González- Zabala, M. P. & Fuentes-Cuadrado, C. V. (2018). Análisis bibiliométrico: salud y calidad de vida. 1. ed. Universidade del Magdalena, Santa Marta, Colombia.

Araujo, F. A., Brasil, F. L., Santos, A. C. L., Batista Junior, L. S., Dutra, S. P. F., & Batista, C. E. C. F. (2017). Auris System: Providing Vibrotactile Feedback for Hearing Impaired Population. BioMed research international, 2017, 2181380. https://doi.org/10.1155/2017/2181380.

Borowiec, J. & Hökelmann, A. & Osiński, W. (2019). The Level of Self-Esteem of Deaf Children: Can Participating in Dance Lessons with Vibrational Headphones Improve It?. The Arts in Psychotherapy. 64. 10.1016/j.aip.2019.03.004.

Brasil. (2015). Lei nº 13.146, de 6 de jul. de 2015. Lei Brasileira de Inclusão da Pessoa com Deficiência. Diário Oficial da União, 7 de julho de 2015. Disponível em: http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Lei/L13146.htm; acesso em: 23 de junho de 2021.

Ezawa M. (1988). Rhythm perception equipment for skin vibratory stimulation. IEEE engineering in medicine and biology magazine: the quarterly magazine of the Engineering in Medicine & Biology Society, 7(3), 30–34. https://doi.org/10.1109/51.7932.

Florian, H.; Mocanu, A.; Vlasin, C.; Machado, J.; Carvalho, V.; Soares, F.; Astilean, A. & Avram, C. (2017). Deaf people feeling music rhythm by using a sensing and actuating device. Sensors and Actuators A: Physical, v. 267. https://doi.org/10.1016/j.sna.2017.10.034.

Good, A., Reed, M. J., & Russo, F. A. (2014). Compensatory plasticity in the deaf brain: effects on perception of music. Brain sciences, 4(4), 560–574. https://doi.org/10.3390/brainsci4040560.

Gesser, A. (2009). LIBRAS? que língua é essa? Crenças e preconceitos em torno da língua de sinais e da realidade surda. São Paulo: Parábola.

Goffman, E. (2008). Estigma: notas sobre a manipulação da identidade deteriorada. Trad. Márcia Bandeira de Mello Leite Nunes. 4.ed. Rio de Janeiro: LTC.

Györgyjakab, M. (2018). Music belongs to all of us! even to the the deaf! (?). Studia Universitatis Babes-Bolyai - Musica, n. 2. https://www.ceeol.com/search/article-detail?id=722854.

Karam, M., Russo, F. A., & Fels, D. I. (2009). Designing the Model Human Cochlea: An Ambient Crossmodal Audio-Tactile Display. IEEE transactions on haptics, 2(3), 160–169. https://doi.org/10.1109/TOH.2009.32

Lucía, M. J. et al. (2020). Vibrotactile Captioning of Musical Effects in Audio-Visual Media as an Alternative for Deaf and Hard of Hearing People: An EEG Study. IEEE Access, vol. 8. doi: 10.1109/ACCESS.2020.3032229.

Martias, Z. (2017). The Contribution of Playing Music Notation toward the Development of Sound Perception on Students with Hearing Impaired. Advances in Social Science, Education and Humanities Research (ASSEHR), volume 148. https://doi.org/10.2991/icla-17.2018.63. Disponível em: https://www.atlantis-press.com/article/25888959.pdf.

Moraes, R. & Galiazzi, M. C. (2006). Análise textual discursiva: processo reconstrutivo de múltiplas faces. Ciência & Educação (Bauru), 12(1),117-128. Disponível em: https://doi.org/10.1590/S1516-73132006000100009.

Otero Caicedo, L. E. (2021). La música que des-cubre el silencio: Pedagogías decoloniales para la educación musical de personas sordas. Calle 14 revista de investigación en el campo del arte, 16(29), 118–127. https://doi.org/10.14483/21450706.17407.

Paula, T. R. M. de; Pederiva, P. L. M. (2018). Sou surdo e gosto de música: a musicalidade da pessoa surda na perspectiva histórico-cultural. Editora Appris. Edição do Kindle.

Petry, B.; Illandara, T.; Elvitigala, D. S. & Nanayakkara, S. (2018). Supporting Rhythm Activities of Deaf Children using Music-Sensory-Substitution Systems. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). Association for Computing Machinery, New York, NY, USA, Paper 486, 1–10. DOI:https://doi.org/10.1145/3173574.3174060.

Ribeiro, H. C. M. (2017). Bibliometria: quinze anos de análise da produção acadêmica em periódicos brasileiros. Biblios, 0(69), 1-20. https://dx.doi.org/10.5195/biblios.2017.393.

Russo, F. A., Ammirante, P., & Fels, D. I. (2012). Vibrotactile discrimination of musical timbre. Journal of experimental psychology. Human perception and performance, 38(4), 822–826. https://doi.org/10.1037/a0029046.

Santos, P. K. & Dantas, N. M. R. (2017). Tecnologias assistivas e a inclusão do estudante surdo na educação superior. Revista Internacional de Educação Superior, 3(3), 494–514. DOI: https://doi.org/10.22348/riesup.v3i3.7793.

Sartoretto, M. L. & Bersch, R. (2021). Assistiva: tecnologia e educação. Disponível em: https://www.assistiva.com.br/tassistiva.html. Acesso em 23 de junho de 2021.

Sharp, A., Bacon, B. A., & Champoux, F. (2020). Enhanced tactile identification of musical emotion in the deaf. Experimental brain research, 238(5), 1229–1236. https://doi.org/10.1007/s00221-020-05789-9.

Silva, N. M. da, Alves, J. F., Castro, A. B. C. de, & Varela, J. H. S. (2020). Educação musical de surdos: características, barreiras e práticas exitosas. Educação e Pesquisa, 46. Disponível em: https://doi.org/10.1590/S1678-4634202046221995.

Tranchant, P., Shiell, M. M., Giordano, M., Nadeau, A., Peretz, I., & Zatorre, R. J. (2017). Feeling the Beat: Bouncing Synchronization to Vibrotactile Music in Hearing and Early Deaf People. Frontiers in neuroscience, 11, 507. https://doi.org/10.3389/fnins.2017.00507.

Vigotski , L. S. (2001). A defectologia e o estudo do desenvolvimento e da educação da criança anormal. Educação e Pesquisa, São Paulo, v. 37, n. 4, p. 861-870. https://www.scielo.br/j/ep/a/x987G8H9nDCcvTYQWfsn4kN/?lang=pt.

Published

17/07/2021

How to Cite

FARIAS, A. L. de; DARUB, A. K. G. dos S.; SANTOS, P. K. dos. Vibrotactile Assistive Technology for the musical education of the deaf. Research, Society and Development, [S. l.], v. 10, n. 8, p. e51710816765, 2021. DOI: 10.33448/rsd-v10i8.16765. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16765. Acesso em: 9 jan. 2025.

Issue

Section

Education Sciences