Identification techniques and culture media for the growth of Bacillus thuringiensis used to control vector mosquitoes: Mini review
DOI:
https://doi.org/10.33448/rsd-v10i7.16916Keywords:
Entomopathogenic; Insecticide; Bacterial growth; Biological control.Abstract
Bacillus thuringiensis (Bt) is a bacterium of worldwide interest, due to its high toxicity to a wide range of insect vectors of pathogens to humans and agricultural pests. The insecticidal action of Bt is conferred by the presence of protein crystals, which act as toxins. Several studies are carried out in order to select Bt strains from different ecosystems with mosquitocidal action for vector insects. It is observed that the soil is the most used substrate for the isolation of Bt, being widely found in nature, predominantly in the form of spores. The search for new Bt strains in different regions of the world aims to obtain new toxins with insecticidal action, which can be used in the production of biopesticides. For the cultivation of the strains, Nutrient Agar or NYSM media are used. Culture media have a wide variety of nutrients, being rich in carbon, nitrogen and mineral salts, which are used to induce the growth of microorganisms. Therefore, several studies seek to improve these means for the growth of Bt, using alternative effective and economical means, the control of vector mosquitoes.
References
Agaisse, H., & Lereclus, D. (1995). How does Bacillus thuringiensis produce so much insecticidal crystal protein?. Journal of bacteriology, 177(21), 6027. https://doi.org/10.1128/jb.177.21.6027-6032.1995
Alves, S. B. (1998). Controle microbiano de insetos. 2. ed. Piracicaba, FEALQ.
Angelo, E. A., Vilas-Bôas, G. T., & Castro-Gómez, R. J. H. (2010). Bacillus thuringiensis: características gerais e fermentação. Semina: Ciências Agrárias, 31(4), 945-958.
Argôlo-Filho, R. C., & Loguercio, L. L. (2014). Bacillus thuringiensis is an environmental pathogen and host-specificity has developed as an adaptation to human-generated ecological niches. Insects, 5(1), 62-91. https://doi.org/10.3390/insects5010062
Aronson, A. I. (1993). The two faces of Bacillus thuringiensis: insecticidal proteins and post‐exponential survival. Molecular microbiology, 7(4), 489-496. https://doi.org/10.1111/j.1365-2958.1993.tb01139.x
Badran, A. H., Guzov, V. M., Huai, Q., Kemp, M. M., Vishwanath, P., Kain, W., ... & Liu, D. R. (2016). Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature, 533(7601), 58-63. https://doi.org/10.1038/nature17938
Barreto, M. R. (2005). Prospecção e Caracterização de Genes de Bacillus thuringiensis com Potencial Para o Controle de Insetos-praga da Cultura da Soja.
Ben-Dov, E. (2014). Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins, 6(4), 1222-1243. https://doi.org/10.3390/toxins6041222
Bergman, N. H., Anderson, E. C., Swenson, E. E., Janes, B. K., Fisher, N., Niemeyer, M. M., ... & Hanna, P. C. (2007). Transcriptional profiling of Bacillus anthracis during infection of host macrophages. Infection and immunity, 75(7), 3434-3444. https://doi.org/10.1128/IAI.01345-06
Berry, C., O'Neil, S., Ben-Dov, E., Jones, A. F., Murphy, L., Quail, M. A., ... & Parkhill, J. (2002). Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Applied and environmental microbiology, 68(10), 5082-5095. https://doi.org/10.1128/AEM.68.10.5082-5095.2002
Boniolo, F. S., Rodrigues, R. C., Prata, A. M. R., López, M. L., Jacinto, T., da Silveira, M. M., & Berbert-Molina, M. A. (2012). Oxygen supply in Bacillus thuringiensis fermentations: bringing new insights on their impact on sporulation and δ-endotoxin production. Applied microbiology and biotechnology, 94(3), 625-636. https://doi.org/10.1007/s00253-011-3746-9
Bravo, A. (1997). Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. Journal of bacteriology, 179(9), 2793. https://doi.org/10.1128/jb.179.9.2793-2801.1997
Bravo, A., Gill, S. S., & Soberon, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423-435. https://doi.org/10.1016/j.toxicon.2006.11.022
Bravo, A., Gill, S.S., Soberón, M. (2005). Bacillus thuringiensis mechanisms and use. In: Gilbert, L., Iatrou, K., Gill, S (Eds.). Comprehensive Molecular Insect Science (pp. 175-206). Elsevier BV, Amsterdam.
Bravo, A., Likitvivatanavong, S., Gill, S.S & Soberón, M. (2003). Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41 (7), 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
Campanini, E. B., Davolos, C. C., Alves, E. C. C., & Lemos, M. V. F. (2012). Isolation of Bacillus thuringiensis strains that contain Dipteran-specific cry genes from Ilha Bela (São Paulo, Brazil) soil samples. Brazilian Journal of Biology, 72(2), 243-247. https://doi.org/10.1590/S1519-69842012000200003
Cantón, P. E., Reyes, E. Z., De Escudero, I. R., Bravo, A., & Soberón, M. (2011). Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides, 32(3), 595-600. https://doi.org/10.1016/j.peptides.2010.06.005
Capalbo, D.M.F., Vilas-Bôas, G.T., Suzuki, M.T. (2005). Bacillus thuringiensis. Biotecnologia, Ciência e Desenvolvimento, 34 (24), 78-85.
Carozzi, N. B., Kramer, V. C., Warren, G. W., Evola, S., & Koziel, M. G. (1991). Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology, 57(11), 3057-3061. https://doi.org/10.1128/aem.57.11.3057-3061.1991
Copping, L. G., & Menn, J. J. (2000). Biopesticides: a review of their action, applications and efficacy. Pest Management Science: Formerly Pesticide Science, 56(8), 651-676. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U
Couch, T. L. (2000). Industrial fermentation and formulation of entomopathogenic bacteria. In Entomopathogenic Bacteria: from laboratory to field application (pp. 297-316). Springer, Dordrecht.
Crickmore, N., Zeigler, D.R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Bravo, A., & Dean, D.H. (2020). Bacillus thuringiensis toxin nomenclature. Available on http://www.btnomenclature.info.
Costa, J. R., Rossi, J. R., Marucci, S. C., Alves, E. C. D. C., Volpe, H. X., Ferraudo, A. S., ... & Desidério, J. A. (2010). Atividade tóxica de isolados de Bacillus thuringiensis a larvas de Aedes aegypti (L.) (Diptera: Culicidae). Neotropical Entomology, 39(5), 757-766. https://doi.org/10.1590/S1519-566X2010000500015
Damgaard, P. H. (2000). Natural occurrence and dispersal of Bacillus thuringiensis in the environment. In Entomopathogenic bacteria: from laboratory to field application (pp. 23-40). Springer, Dordrecht.
Delécluse, A., Juárez-Pérez, V., & Berry, C. (2000). Vector-active toxins: structure and diversity. In Entomopathogenic bacteria: from laboratory to field application (pp. 101-125). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_6
Deng, C., Peng, Q., Song, F., & Lereclus, D. (2014). Regulation of cry gene expression in Bacillus thuringiensis. Toxins, 6(7), 2194-2209. https://doi.org/10.3390/toxins6072194
Devidas, P. C., Pandit, B. H., & Vitthalrao, P. S. (2014). Evaluation of different culture media for improvement in bioinsecticides production by indigenous Bacillus thuringiensis and their application against larvae of Aedes aegypti. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/273030
Ehling-Schulz, M., Lereclus, D., & Koehler, T. M. (2019). The Bacillus cereus group: Bacillus species with pathogenic potential. Gram‐Positive Pathogens, 875-902. https://doi.org/10.1128/microbiolspec.GPP3-0032-2018
El-Kersh, T. A., Ahmed, A. M., Al-Sheikh, Y. A., Tripet, F., Ibrahim, M. S., & Metwalli, A. A. (2016). Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (sl). Parasites & vectors, 9(1), 1-14. https://doi.org/10.1186 / s13071-016-1922-6. https://doi.org/10.1186/s13071-016-1922-6
Ernandes, S., Del Bianchi, V.L., Oliveira, I.M. (2013). Evaluation of two different culture media for the development of biopesticides based on Bacillus thuringiensis and their application in larvae of Aedes aegypti. Acta Scientiarum Technology, 35(1),11-18. https://doi.org/10.4025/actascitechnol.v35i1.13831
Espinasse, S., Chaufaux, J., Buisson, C., Perchat, S., Gohar, M., Bourguet, D., & Sanchis, V. (2003). Occurrence and linkage between secreted insecticidal toxins in natural isolates of Bacillus thuringiensis. Current microbiology, 47(6), 501-507. https://doi.org/10.1007/s00284-003-4097-2
Fernández-Chapa, D., Ramírez-Villalobos, J., & Galán-Wong, L. (2019). Toxic Potential of Bacillus thuringiensis: An Overview. Protecting Rice Grains in the Post-Genomic Era. https://doi.org/10.5772/intechopen.85756
Galzer, E. C. W., & Azevedo Filho, W. S. (2016). Utilização do Bacillus thuringiensis no controle biológico de pragas. Revista Interdisciplinar de Ciência Aplicada, 1(1), 13-16.
Ghribi, D., Zouari, N., & Jaoua, S. (2005). Improvement of bioinsecticides production through adaptation of Bacillus thuringiensis cells to heat treatment and NaCl addition. Journal of applied microbiology, 98(4), 823-831. https://doi.org/10.1111/j.1365-2672.2004.02490.x
Glare, T. R., & O'Callaghan, M. H. (2000). Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley&Sons. Inc., New York, NY.
Gobatto, V., Giani, S. G., Camassola, M., Dillon, A. J. P., Specht, A., & Barros, N. M. (2010). Bacillus thuringiensis isolates entomopathogenic for Culex quinquefasciatus (Diptera: Culicidae) and Anticarsia gemmatalis (Lepidoptera: Noctuidae). Brazilian Journal of Biology, 70(4), 1039-1046.6. https://doi.org/10.1590/S1519-69842010000500018
González Jr, J., & Carlton, B. C. (1984). A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid, 11(1), 28-38. https://doi.org/10.1016/0147-619x(84)90004-0
Guz, K., Bugla-Ploskonska, G., & Doroszkiewicz, W. (2009). The Occurrence, Biodiversity and Toxicity of Bacillus thuringiensis Strains Isolated from the Insect Pest Lymantria dispar(Poland). Polish journal of microbiology, 58(2), 155-161.
Habib, M.E.M., Andrade, C.F.S. (1996). Bactérias entomopatogênicas. In: Alves, S.B (Ed). Controle Microbiano de Insetos (pp. 383-446). FEALQ, Piracicaba
Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology and Molecular Biology Reviews, 53(2), 242-255.
Johnson, D. E., & McGaughey, W. H. (1996). Contribution of Bacillus thuringiensis spores to toxicity of purified Cry proteins towards Indianmeal moth larvae. Current microbiology, 33(1), 54-59. https://doi.org/10.1007/s002849900074.
Konecka, E., Baranek, J., Hrycak, A., & Kaznowski, A. (2012). Insecticidal activity of Bacillus thuringiensis strains isolated from soil and water. The Scientific World Journal, 2012. https://doi.org/10.1100 / 2012/710501
Kuo, W. S., & Chak, K. F. (1996). Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Applied and Environmental Microbiology, 62(4), 1369-1377.
Lereclus, D., Arantes, O., Chaufaux, J., & Lecadet, M. M. (1989). Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis. FEMS microbiology letters, 60(2), 211-217. https://doi.org/10.1111/j.1574-6968.1989.tb03448.x
Li, J., Carroll, J., & Ellar, D. J. (1991). Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature, 353(6347), 815-821. https://doi.org/10.1038/353815a0
Liu, B. L., & Tzeng, Y. M. (1998). Optimization of growth medium for the production of spores from Bacillus thuringiensis using response surface methodology. Bioprocess Engineering, 18(6), 413-418. https://doi.org/10.1007/PL00008999
Liu, Q., Hallerman, E., Peng, Y., & Li, Y. (2016). Development of Bt rice and Bt maize in China and their efficacy in target pest control. International journal of molecular sciences, 17(10), 1561. https://doi.org/10.3390/ijms17101561
Lobo, K. D. S., Soares-da-Silva, J., Silva, M. C. D., Tadei, W. P., Polanczyk, R. A., & Pinheiro, V. C. S. (2018). Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Revista Brasileira de Entomologia, 62(1), 5-12. https://doi.org/10.1016/j.rbe.2017.11.004
Marrone, P.G. (2019). Pesticidal natural products–status and future potential. Pest Management Science, 75 (9), 2325-2340. https://doi.org/10.1002/ps.5433
Maagd, R. A., Bravo, A., Berry, C., Crickmore, N., & Schnepf, H. E. (2003). Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annual review of genetics, 37(1), 409-433. https://doi.org/10.1146/annurev.genet.37.110801.143042
Meadows, M. P. (1993). Bacillus thuringiensis in the environment: ecology and risk assessment. Bacillus thuringiensis, An environmental biopesticide: Theory and Practice, 193-220.
Medeiros, P. T., Sone, E. H., Soares, C. M. S., Dias, J. M. C. D. S., & Monnerat, R. G. (2006). Evaluation of insecticides based on Bacillus thuringiensis in the control of the diamondback moth. Horticultura Brasileira, 24(2), 245-248. https://doi.org/10.1590/S0102-05362006000200026
Monnerat, R. G., Dias, D. G. S., Silva, S. F. D., Martins, E. S., Berry, C., Falcão, R., ... & Soares, C. M. S. (2005). Screening of Bacillus thuringiensis strains effective against mosquitoes. Pesquisa Agropecuária Brasileira, 40(2), 103-106. https://doi.org/10.1590/S0100-204X2005000200001
Onofre, J., Pacheco, S., Torres-Quintero, M. C., Gill, S. S., Soberon, M., & Bravo, A. (2020). The Cyt1Aa toxin from Bacillus thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes. Journal of Biological Chemistry, 295(28), 9606-9617. https://doi.org/10.1074/jbc.RA120.013869
Ootani, M. A., Ramos, A. C. C., de Azevedo, E. B., de Oliveira Garcia, B., dos Santos, S. F., & de Sousa Aguiar, R. W. (2011). Avaliação da toxicidade de estirpes de Bacillus thuringiensis para Aedes aegypti Linneus (Díptera: Culicidae). Journal of Biotechnology and Biodiversity, 2(2), 37-43. https://doi.org/10.20873/jbb.uft.cemaf.v2n2.ootani
Pérez, C., Fernandez, L. E., Sun, J., Folch, J. L., Gill, S. S., Soberón, M., & Bravo, A. (2005). Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proceedings of the National Academy of Sciences, 102(51), 18303-18308. https://doi.org/10.1073/pnas.0505494102
Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and molecular biology reviews, 71(2), 255-281. https://doi.org/10.1128/MMBR.00034-06
Polanczyk, R. A. (2004). Estudos de Bacillus thuringiensis Berliner visando ao controle de Spodoptera frugiperda (JE Smith) (Doctoral dissertation, Universidade de São Paulo).
Polanczyk, R. A., Zanúncio, J. C., & Alves, S. B. (2009). Relationship between chemical properties of the soil and the occurrence of Bacillus thuringiensis. Ciência Rural, 39(1), 1-5. https://doi.org/10.1590/S0103-84782009000100001
Polanczyk, R.A. & Alves, S. (2003). Bacillus thuringiensis: Uma breve revisão. Agrociencia Uruguay, 7(2), 1-10.
Silva, S. F., Dias, J. D. S., & Monnerat, R. (2002). Comparação entre três métodos de isolamento de bacilos entomopatogênicos. Embrapa Recursos Genéticos e Biotecnologia-Circular Técnica (INFOTECA-E).
Poopathi, S., & Abidha, S. (2011). Coffee husk waste for fermentation production of mosquitocidal bacteria. Journal of economic entomology, 104(6), 1816-1823. https://doi.org/10.1603/EC11125
Poopathi, S., & Abidha, S. (2012). The use of clarified butter sediment waste from dairy industries for the production of mosquitocidal bacteria. International journal of dairy technology, 65(1), 152-157. https://doi.org/10.1111/j.1471-0307.2011.00745.x
Poopathi, S., & Kumar, K. A. (2003). Novel fermentation media for production of Bacillus thuringiensis subsp. israelensis. Journal of economic entomology, 96(4), 1039-1044. https://doi.org/10.1093/jee/96.4.1039
Prabakaran, G., & Balaraman, K. (2006). Development of a cost-effective medium for the large scale production of Bacillus thuringiensis var israelensis. Biological Control, 36(3), 288-292. https://doi.org/10.1016/j.biocontrol.2005.09.018
Prabakaran, G., Hoti, S. L., Manonmani, A. M., & Balaraman, K. (2008). Coconut water as a cheap source for the production of δ endotoxin of Bacillus thuringiensis var. israelensis, a mosquito control agent. Acta tropica, 105(1), 35-38. https://doi.org/10.1016/j.actatropica.2007.09.002
Praça, L. B., Batista, A. C., Martins, É. S., Siqueira, C. B., Dias, D. G. D. S., Gomes, A. C. M. M., ... & Monnerat, R. G. (2004). Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera. Pesquisa Agropecuária Brasileira, 39(1), 11-16. https://doi.org/10.1590/S0100-204X2004000100002
Raymond, B. (2017). The biology, ecology and taxonomy of Bacillus thuringiensis and related bacteria. In Bacillus thuringiensis and Lysinibacillus sphaericus (pp. 19-39). Springer, Cham.
Reyaz, A. L., Gunapriya, L., & Arulselvi, P. I. (2017). Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech, 7(2), 1-11. https://doi.org/10.1007/s13205-017-0756-z.
Rossa, C. A., Yantorno, O. M., Arcas, J. A., & Ertola, R. J. (1990). Organic and inorganic nitrogen source ratio effects on Bacillus thuringiensis var. israelensis delta-endotoxin production. World Journal of Microbiology and Biotechnology, 6(1), 27-31. https://doi.org/10.1007/BF01225351
Salama, H. S., Foda, M. S., Dulmage, H. T., & El-Sharaby, A. (1983). Novel fermentation media for production of δ-endotoxins from Bacillus thuringiensis. Journal of Invertebrate Pathology, 41(1), 8-19. https://doi.org/10.1016/0022-2011(83)90231-8
Sanchis, V. (2011). From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agronomy for sustainable development, 31(1), 217-231. https://doi.org/10.1051/agro/2010027
Saraiva, J.F., Maitra, A., Galardo, A.K.R & Scarpassa, V.M. (2019). First record of Aedes (Stegomyia) albopictus in the state of Amapá, northern Brazil. Acta Amazonica, 49 (1), 71-74. https://doi.org/10.1590/1809-4392201802771
Saraswathy, N., & Kumar, P. A. (2004). Protein engineering of delta-endotoxins of Bacillus thuringiensis. Electronic Journal of Biotechnology, 7(2), 178-188.
Sarrafzadeh, M. H. (2012). Nutritional requirements of Bacillus thuringiensis during different phases of growth, sporulation and germination evaluated by plackett-burman method. https://doi.org/10.30492/IJCCE.2012.5936
Schnepf, H. E., & Whiteley, H. R. (1981). Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proceedings of the National Academy of Sciences, 78(5), 2893-2897. https://doi.org/10.1073/pnas.78.5.2893
Silva, N. D. (2008). Caracterização e seleção de isolados de Bacillus thuringiensis efetivos contra Sitophilus oryzae L., 1763.
Soares-da-Silva, J., Pinheiro, V. C. S., Litaiff-Abreu, E., Polanczyk, R. A., & Tadei, W. P. (2015). Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia, 59(1), 1-6. https://doi.org/10.1016/j.rbe.2015.02.001
Soares-da-Silva, J., Queirós, S.G., Aguiar, J.S., Viana, J.L., Neta, M.D.R.A.V., Silva, M.C., Pinheiro, V.C.S., Polanczyk, R.A., Carvalho-Zilse., G.A & Tadei, W.P. (2017). Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance. Acta Tropica, 176, 197-205. https://doi.org/10.1016/j.actatropica.2017.08.006
Soccol, C. R., Pollom, T. E., Fendrich, R. C., Prochmann, F. A., Mohan, R., Blaskowski, M. M. M., ... & Soccol, V. T. (2009). Development of a low cost bioprocess for endotoxin production by Bacillus thuringiensis var israelensis intended for biological control of Aedes aegypti. Brazilian Archives of Biology and Technology, 52(SPE), 121-130. https://doi.org/10.1590/S1516-89132009000700017
Tan, F., Zhu, J., Tang, J., Tang, X., Wang, S., Zheng, A., & Li, P. (2009). Cloning and characterization of two novel crystal protein genes, cry54Aa1 and cry30Fa1, from Bacillus thuringiensis strain BtMC28. Current microbiology, 58(6), 654-659. https://doi.org/10.1007/s00284-009-9386-y
Tissera, H. A., Samaraweera, P. C., Jayamanne, B. D. W., Janaki, M. D. S., U Chulasiri, M. P. P., Rodrigo, C., & Fernando, S. D. (2018). Use of Bacillus thuringiensis israelensis in integrated vector control of Aedes sp. in Sri Lanka: a prospective controlled effectiveness study. Tropical Medicine & International Health, 23(2), 229-235. https://doi.org/10.1111/tmi.13015
Van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of invertebrate pathology, 101(1), 1-16. https://doi.org/10.1016/j.jip.2009.02.009
Van Frankenhuyzen, K. (2013). Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. Journal of Invertebrate Pathology, 114(1), 76-85. https://doi.org/10.1016/j.jip.2013.05.010
Viana, J. L., Soares-da-Silva, J., Vieira-Neta, M. R. A., Tadei, W. P., Oliveira, C. D., Abdalla, F. C., ... & Pinheiro, V. C. S. (2021). Isolates of Bacillus thuringiensis from Maranhão biomes with potential insecticidal action against Aedes aegypti larvae (Diptera, Culicidae). Brazilian Journal of Biology, 81(1), 114-124. https://doi.org/10.1590/1519-6984.223389
Vieira-Neta, M. R. A., Soares-da-Silva, J., Viana, J. L., Silva, M. C., Tadei, W. P., & Pinheiro, V. C. S. (2020). Strain of Bacillus thuringiensis from Restinga, toxic to Aedes (Stegomyia) aegypti (Linnaeus) (Diptera, Culicidae). Brazilian Journal of Biology, (AHEAD). https://doi.org/10.1590/1519-6984.228790
Wang, J., Boets, A., Van Rie, J., & Ren, G. (2003). Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. Journal of Invertebrate Pathology, 82(1), 63-71. https://doi.org/10.1016/s0022-2011(02)00202-1
World Health Organization. (1985). Informal consultation on the development of Bacillus sphaericus as microbial larvicide. Geneva: UNDP: World Bank: WHO, 24p. Special Programme for Research and Training in Tropical Diseases (TDR).
Yamamoto, T., & Dean, D. H. (2000). Insecticidal proteins produced by bacteria pathogenic to agricultural pests. In Entomopathogenic bacteria: from laboratory to field application (pp. 81-100). Springer, Dordrecht.
Zhong, W., Shou, Y., Yoshida, T. M., & Marrone, B. L. (2007). Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis by using pulsed-field gel electrophoresis. Applied and environmental microbiology, 73(10), 3446-3449. https://doi.org/10.1128/AEM.02478-06
Zogo, B., Tchiekoi, B. N. C., Koffi, A. A., Dahounto, A., Alou, L. P. A., Dabiré, R. K., ... & Pennetier, C. (2019). Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae. Malaria journal, 18(1), 1-9. https://doi.org/ 10.1186 / s12936-019-2687-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Juliete Lima Viana; Katiane dos Santos Lobo; Maria dos Remédios Araújo Vieira Neta; Iolanda Cristina Silveira Duarte; Tiago Palladino Delforno; Joelma Soares da Silva; Valéria Cristina Soares Pinheiro; Rosemary Aparecida Roque; Wanderli Pedro Tadei
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.