Técnicas de identificação e meios de cultivo para crescimento de Bacillus thuringiensis utilizados no controle de mosquitos vetores: Mini revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v10i7.16916

Palavras-chave:

Entomopatogênico; Inseticida; Crescimento bacteriano; Controle biológico.

Resumo

Bacillus thuringiensis (Bt) é uma bactéria de interesse mundial, devido sua elevada toxicidade a uma ampla gama de insetos vetores de agentes patogênicos ao homem e pragas agrícolas. A ação inseticida de Bt é conferida pela presença de cristal proteico, que atuam como toxinas. Diversos estudos são realizados com intuito de selecionar linhagens de Bt de diferentes ecossistemas com ação mosquitocida para insetos vetores. Observa-se que o solo é o substrato mais utilizado para o isolamento de Bt, sendo amplamente encontrado na natureza, predominantemente, na forma de esporos. A busca de novas linhagens de Bt em diferentes regiões do mundo tem como objetivo obter novas toxinas com ação inseticida, e que possam ser utilizadas na produção de biopesticidas. Para o cultivo das linhagens, são utilizados os meios Ágar Nutriente ou NYSM. Os meios de cultura possuem grande variedade de nutrientes, sendo ricos em carbono, nitrogênio e sais minerais, que são utilizados para induzir o crescimento dos microrganismos. Portanto, diversos estudos buscam aprimorar esses meios para o crescimento de Bt, utilizando meios alternativos eficazes e econômicos, visando o controle de mosquitos vetores.

Referências

Agaisse, H., & Lereclus, D. (1995). How does Bacillus thuringiensis produce so much insecticidal crystal protein?. Journal of bacteriology, 177(21), 6027. https://doi.org/10.1128/jb.177.21.6027-6032.1995

Alves, S. B. (1998). Controle microbiano de insetos. 2. ed. Piracicaba, FEALQ.

Angelo, E. A., Vilas-Bôas, G. T., & Castro-Gómez, R. J. H. (2010). Bacillus thuringiensis: características gerais e fermentação. Semina: Ciências Agrárias, 31(4), 945-958.

Argôlo-Filho, R. C., & Loguercio, L. L. (2014). Bacillus thuringiensis is an environmental pathogen and host-specificity has developed as an adaptation to human-generated ecological niches. Insects, 5(1), 62-91. https://doi.org/10.3390/insects5010062

Aronson, A. I. (1993). The two faces of Bacillus thuringiensis: insecticidal proteins and post‐exponential survival. Molecular microbiology, 7(4), 489-496. https://doi.org/10.1111/j.1365-2958.1993.tb01139.x

Badran, A. H., Guzov, V. M., Huai, Q., Kemp, M. M., Vishwanath, P., Kain, W., ... & Liu, D. R. (2016). Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature, 533(7601), 58-63. https://doi.org/10.1038/nature17938

Barreto, M. R. (2005). Prospecção e Caracterização de Genes de Bacillus thuringiensis com Potencial Para o Controle de Insetos-praga da Cultura da Soja.

Ben-Dov, E. (2014). Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins, 6(4), 1222-1243. https://doi.org/10.3390/toxins6041222

Bergman, N. H., Anderson, E. C., Swenson, E. E., Janes, B. K., Fisher, N., Niemeyer, M. M., ... & Hanna, P. C. (2007). Transcriptional profiling of Bacillus anthracis during infection of host macrophages. Infection and immunity, 75(7), 3434-3444. https://doi.org/10.1128/IAI.01345-06

Berry, C., O'Neil, S., Ben-Dov, E., Jones, A. F., Murphy, L., Quail, M. A., ... & Parkhill, J. (2002). Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Applied and environmental microbiology, 68(10), 5082-5095. https://doi.org/10.1128/AEM.68.10.5082-5095.2002

Boniolo, F. S., Rodrigues, R. C., Prata, A. M. R., López, M. L., Jacinto, T., da Silveira, M. M., & Berbert-Molina, M. A. (2012). Oxygen supply in Bacillus thuringiensis fermentations: bringing new insights on their impact on sporulation and δ-endotoxin production. Applied microbiology and biotechnology, 94(3), 625-636. https://doi.org/10.1007/s00253-011-3746-9

Bravo, A. (1997). Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. Journal of bacteriology, 179(9), 2793. https://doi.org/10.1128/jb.179.9.2793-2801.1997

Bravo, A., Gill, S. S., & Soberon, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423-435. https://doi.org/10.1016/j.toxicon.2006.11.022

Bravo, A., Gill, S.S., Soberón, M. (2005). Bacillus thuringiensis mechanisms and use. In: Gilbert, L., Iatrou, K., Gill, S (Eds.). Comprehensive Molecular Insect Science (pp. 175-206). Elsevier BV, Amsterdam.

Bravo, A., Likitvivatanavong, S., Gill, S.S & Soberón, M. (2003). Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41 (7), 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006

Campanini, E. B., Davolos, C. C., Alves, E. C. C., & Lemos, M. V. F. (2012). Isolation of Bacillus thuringiensis strains that contain Dipteran-specific cry genes from Ilha Bela (São Paulo, Brazil) soil samples. Brazilian Journal of Biology, 72(2), 243-247. https://doi.org/10.1590/S1519-69842012000200003

Cantón, P. E., Reyes, E. Z., De Escudero, I. R., Bravo, A., & Soberón, M. (2011). Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides, 32(3), 595-600. https://doi.org/10.1016/j.peptides.2010.06.005

Capalbo, D.M.F., Vilas-Bôas, G.T., Suzuki, M.T. (2005). Bacillus thuringiensis. Biotecnologia, Ciência e Desenvolvimento, 34 (24), 78-85.

Carozzi, N. B., Kramer, V. C., Warren, G. W., Evola, S., & Koziel, M. G. (1991). Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology, 57(11), 3057-3061. https://doi.org/10.1128/aem.57.11.3057-3061.1991

Copping, L. G., & Menn, J. J. (2000). Biopesticides: a review of their action, applications and efficacy. Pest Management Science: Formerly Pesticide Science, 56(8), 651-676. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U

Couch, T. L. (2000). Industrial fermentation and formulation of entomopathogenic bacteria. In Entomopathogenic Bacteria: from laboratory to field application (pp. 297-316). Springer, Dordrecht.

Crickmore, N., Zeigler, D.R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Bravo, A., & Dean, D.H. (2020). Bacillus thuringiensis toxin nomenclature. Available on http://www.btnomenclature.info.

Costa, J. R., Rossi, J. R., Marucci, S. C., Alves, E. C. D. C., Volpe, H. X., Ferraudo, A. S., ... & Desidério, J. A. (2010). Atividade tóxica de isolados de Bacillus thuringiensis a larvas de Aedes aegypti (L.) (Diptera: Culicidae). Neotropical Entomology, 39(5), 757-766. https://doi.org/10.1590/S1519-566X2010000500015

Damgaard, P. H. (2000). Natural occurrence and dispersal of Bacillus thuringiensis in the environment. In Entomopathogenic bacteria: from laboratory to field application (pp. 23-40). Springer, Dordrecht.

Delécluse, A., Juárez-Pérez, V., & Berry, C. (2000). Vector-active toxins: structure and diversity. In Entomopathogenic bacteria: from laboratory to field application (pp. 101-125). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_6

Deng, C., Peng, Q., Song, F., & Lereclus, D. (2014). Regulation of cry gene expression in Bacillus thuringiensis. Toxins, 6(7), 2194-2209. https://doi.org/10.3390/toxins6072194

Devidas, P. C., Pandit, B. H., & Vitthalrao, P. S. (2014). Evaluation of different culture media for improvement in bioinsecticides production by indigenous Bacillus thuringiensis and their application against larvae of Aedes aegypti. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/273030

Ehling-Schulz, M., Lereclus, D., & Koehler, T. M. (2019). The Bacillus cereus group: Bacillus species with pathogenic potential. Gram‐Positive Pathogens, 875-902. https://doi.org/10.1128/microbiolspec.GPP3-0032-2018

El-Kersh, T. A., Ahmed, A. M., Al-Sheikh, Y. A., Tripet, F., Ibrahim, M. S., & Metwalli, A. A. (2016). Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (sl). Parasites & vectors, 9(1), 1-14. https://doi.org/10.1186 / s13071-016-1922-6. https://doi.org/10.1186/s13071-016-1922-6

Ernandes, S., Del Bianchi, V.L., Oliveira, I.M. (2013). Evaluation of two different culture media for the development of biopesticides based on Bacillus thuringiensis and their application in larvae of Aedes aegypti. Acta Scientiarum Technology, 35(1),11-18. https://doi.org/10.4025/actascitechnol.v35i1.13831

Espinasse, S., Chaufaux, J., Buisson, C., Perchat, S., Gohar, M., Bourguet, D., & Sanchis, V. (2003). Occurrence and linkage between secreted insecticidal toxins in natural isolates of Bacillus thuringiensis. Current microbiology, 47(6), 501-507. https://doi.org/10.1007/s00284-003-4097-2

Fernández-Chapa, D., Ramírez-Villalobos, J., & Galán-Wong, L. (2019). Toxic Potential of Bacillus thuringiensis: An Overview. Protecting Rice Grains in the Post-Genomic Era. https://doi.org/10.5772/intechopen.85756

Galzer, E. C. W., & Azevedo Filho, W. S. (2016). Utilização do Bacillus thuringiensis no controle biológico de pragas. Revista Interdisciplinar de Ciência Aplicada, 1(1), 13-16.

Ghribi, D., Zouari, N., & Jaoua, S. (2005). Improvement of bioinsecticides production through adaptation of Bacillus thuringiensis cells to heat treatment and NaCl addition. Journal of applied microbiology, 98(4), 823-831. https://doi.org/10.1111/j.1365-2672.2004.02490.x

Glare, T. R., & O'Callaghan, M. H. (2000). Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley&Sons. Inc., New York, NY.

Gobatto, V., Giani, S. G., Camassola, M., Dillon, A. J. P., Specht, A., & Barros, N. M. (2010). Bacillus thuringiensis isolates entomopathogenic for Culex quinquefasciatus (Diptera: Culicidae) and Anticarsia gemmatalis (Lepidoptera: Noctuidae). Brazilian Journal of Biology, 70(4), 1039-1046.6. https://doi.org/10.1590/S1519-69842010000500018

González Jr, J., & Carlton, B. C. (1984). A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid, 11(1), 28-38. https://doi.org/10.1016/0147-619x(84)90004-0

Guz, K., Bugla-Ploskonska, G., & Doroszkiewicz, W. (2009). The Occurrence, Biodiversity and Toxicity of Bacillus thuringiensis Strains Isolated from the Insect Pest Lymantria dispar(Poland). Polish journal of microbiology, 58(2), 155-161.

Habib, M.E.M., Andrade, C.F.S. (1996). Bactérias entomopatogênicas. In: Alves, S.B (Ed). Controle Microbiano de Insetos (pp. 383-446). FEALQ, Piracicaba

Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology and Molecular Biology Reviews, 53(2), 242-255.

Johnson, D. E., & McGaughey, W. H. (1996). Contribution of Bacillus thuringiensis spores to toxicity of purified Cry proteins towards Indianmeal moth larvae. Current microbiology, 33(1), 54-59. https://doi.org/10.1007/s002849900074.

Konecka, E., Baranek, J., Hrycak, A., & Kaznowski, A. (2012). Insecticidal activity of Bacillus thuringiensis strains isolated from soil and water. The Scientific World Journal, 2012. https://doi.org/10.1100 / 2012/710501

Kuo, W. S., & Chak, K. F. (1996). Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Applied and Environmental Microbiology, 62(4), 1369-1377.

Lereclus, D., Arantes, O., Chaufaux, J., & Lecadet, M. M. (1989). Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis. FEMS microbiology letters, 60(2), 211-217. https://doi.org/10.1111/j.1574-6968.1989.tb03448.x

Li, J., Carroll, J., & Ellar, D. J. (1991). Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature, 353(6347), 815-821. https://doi.org/10.1038/353815a0

Liu, B. L., & Tzeng, Y. M. (1998). Optimization of growth medium for the production of spores from Bacillus thuringiensis using response surface methodology. Bioprocess Engineering, 18(6), 413-418. https://doi.org/10.1007/PL00008999

Liu, Q., Hallerman, E., Peng, Y., & Li, Y. (2016). Development of Bt rice and Bt maize in China and their efficacy in target pest control. International journal of molecular sciences, 17(10), 1561. https://doi.org/10.3390/ijms17101561

Lobo, K. D. S., Soares-da-Silva, J., Silva, M. C. D., Tadei, W. P., Polanczyk, R. A., & Pinheiro, V. C. S. (2018). Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Revista Brasileira de Entomologia, 62(1), 5-12. https://doi.org/10.1016/j.rbe.2017.11.004

Marrone, P.G. (2019). Pesticidal natural products–status and future potential. Pest Management Science, 75 (9), 2325-2340. https://doi.org/10.1002/ps.5433

Maagd, R. A., Bravo, A., Berry, C., Crickmore, N., & Schnepf, H. E. (2003). Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annual review of genetics, 37(1), 409-433. https://doi.org/10.1146/annurev.genet.37.110801.143042

Meadows, M. P. (1993). Bacillus thuringiensis in the environment: ecology and risk assessment. Bacillus thuringiensis, An environmental biopesticide: Theory and Practice, 193-220.

Medeiros, P. T., Sone, E. H., Soares, C. M. S., Dias, J. M. C. D. S., & Monnerat, R. G. (2006). Evaluation of insecticides based on Bacillus thuringiensis in the control of the diamondback moth. Horticultura Brasileira, 24(2), 245-248. https://doi.org/10.1590/S0102-05362006000200026

Monnerat, R. G., Dias, D. G. S., Silva, S. F. D., Martins, E. S., Berry, C., Falcão, R., ... & Soares, C. M. S. (2005). Screening of Bacillus thuringiensis strains effective against mosquitoes. Pesquisa Agropecuária Brasileira, 40(2), 103-106. https://doi.org/10.1590/S0100-204X2005000200001

Onofre, J., Pacheco, S., Torres-Quintero, M. C., Gill, S. S., Soberon, M., & Bravo, A. (2020). The Cyt1Aa toxin from Bacillus thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes. Journal of Biological Chemistry, 295(28), 9606-9617. https://doi.org/10.1074/jbc.RA120.013869

Ootani, M. A., Ramos, A. C. C., de Azevedo, E. B., de Oliveira Garcia, B., dos Santos, S. F., & de Sousa Aguiar, R. W. (2011). Avaliação da toxicidade de estirpes de Bacillus thuringiensis para Aedes aegypti Linneus (Díptera: Culicidae). Journal of Biotechnology and Biodiversity, 2(2), 37-43. https://doi.org/10.20873/jbb.uft.cemaf.v2n2.ootani

Pérez, C., Fernandez, L. E., Sun, J., Folch, J. L., Gill, S. S., Soberón, M., & Bravo, A. (2005). Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proceedings of the National Academy of Sciences, 102(51), 18303-18308. https://doi.org/10.1073/pnas.0505494102

Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and molecular biology reviews, 71(2), 255-281. https://doi.org/10.1128/MMBR.00034-06

Polanczyk, R. A. (2004). Estudos de Bacillus thuringiensis Berliner visando ao controle de Spodoptera frugiperda (JE Smith) (Doctoral dissertation, Universidade de São Paulo).

Polanczyk, R. A., Zanúncio, J. C., & Alves, S. B. (2009). Relationship between chemical properties of the soil and the occurrence of Bacillus thuringiensis. Ciência Rural, 39(1), 1-5. https://doi.org/10.1590/S0103-84782009000100001

Polanczyk, R.A. & Alves, S. (2003). Bacillus thuringiensis: Uma breve revisão. Agrociencia Uruguay, 7(2), 1-10.

Silva, S. F., Dias, J. D. S., & Monnerat, R. (2002). Comparação entre três métodos de isolamento de bacilos entomopatogênicos. Embrapa Recursos Genéticos e Biotecnologia-Circular Técnica (INFOTECA-E).

Poopathi, S., & Abidha, S. (2011). Coffee husk waste for fermentation production of mosquitocidal bacteria. Journal of economic entomology, 104(6), 1816-1823. https://doi.org/10.1603/EC11125

Poopathi, S., & Abidha, S. (2012). The use of clarified butter sediment waste from dairy industries for the production of mosquitocidal bacteria. International journal of dairy technology, 65(1), 152-157. https://doi.org/10.1111/j.1471-0307.2011.00745.x

Poopathi, S., & Kumar, K. A. (2003). Novel fermentation media for production of Bacillus thuringiensis subsp. israelensis. Journal of economic entomology, 96(4), 1039-1044. https://doi.org/10.1093/jee/96.4.1039

Prabakaran, G., & Balaraman, K. (2006). Development of a cost-effective medium for the large scale production of Bacillus thuringiensis var israelensis. Biological Control, 36(3), 288-292. https://doi.org/10.1016/j.biocontrol.2005.09.018

Prabakaran, G., Hoti, S. L., Manonmani, A. M., & Balaraman, K. (2008). Coconut water as a cheap source for the production of δ endotoxin of Bacillus thuringiensis var. israelensis, a mosquito control agent. Acta tropica, 105(1), 35-38. https://doi.org/10.1016/j.actatropica.2007.09.002

Praça, L. B., Batista, A. C., Martins, É. S., Siqueira, C. B., Dias, D. G. D. S., Gomes, A. C. M. M., ... & Monnerat, R. G. (2004). Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera. Pesquisa Agropecuária Brasileira, 39(1), 11-16. https://doi.org/10.1590/S0100-204X2004000100002

Raymond, B. (2017). The biology, ecology and taxonomy of Bacillus thuringiensis and related bacteria. In Bacillus thuringiensis and Lysinibacillus sphaericus (pp. 19-39). Springer, Cham.

Reyaz, A. L., Gunapriya, L., & Arulselvi, P. I. (2017). Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech, 7(2), 1-11. https://doi.org/10.1007/s13205-017-0756-z.

Rossa, C. A., Yantorno, O. M., Arcas, J. A., & Ertola, R. J. (1990). Organic and inorganic nitrogen source ratio effects on Bacillus thuringiensis var. israelensis delta-endotoxin production. World Journal of Microbiology and Biotechnology, 6(1), 27-31. https://doi.org/10.1007/BF01225351

Salama, H. S., Foda, M. S., Dulmage, H. T., & El-Sharaby, A. (1983). Novel fermentation media for production of δ-endotoxins from Bacillus thuringiensis. Journal of Invertebrate Pathology, 41(1), 8-19. https://doi.org/10.1016/0022-2011(83)90231-8

Sanchis, V. (2011). From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agronomy for sustainable development, 31(1), 217-231. https://doi.org/10.1051/agro/2010027

Saraiva, J.F., Maitra, A., Galardo, A.K.R & Scarpassa, V.M. (2019). First record of Aedes (Stegomyia) albopictus in the state of Amapá, northern Brazil. Acta Amazonica, 49 (1), 71-74. https://doi.org/10.1590/1809-4392201802771

Saraswathy, N., & Kumar, P. A. (2004). Protein engineering of delta-endotoxins of Bacillus thuringiensis. Electronic Journal of Biotechnology, 7(2), 178-188.

Sarrafzadeh, M. H. (2012). Nutritional requirements of Bacillus thuringiensis during different phases of growth, sporulation and germination evaluated by plackett-burman method. https://doi.org/10.30492/IJCCE.2012.5936

Schnepf, H. E., & Whiteley, H. R. (1981). Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proceedings of the National Academy of Sciences, 78(5), 2893-2897. https://doi.org/10.1073/pnas.78.5.2893

Silva, N. D. (2008). Caracterização e seleção de isolados de Bacillus thuringiensis efetivos contra Sitophilus oryzae L., 1763.

Soares-da-Silva, J., Pinheiro, V. C. S., Litaiff-Abreu, E., Polanczyk, R. A., & Tadei, W. P. (2015). Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia, 59(1), 1-6. https://doi.org/10.1016/j.rbe.2015.02.001

Soares-da-Silva, J., Queirós, S.G., Aguiar, J.S., Viana, J.L., Neta, M.D.R.A.V., Silva, M.C., Pinheiro, V.C.S., Polanczyk, R.A., Carvalho-Zilse., G.A & Tadei, W.P. (2017). Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance. Acta Tropica, 176, 197-205. https://doi.org/10.1016/j.actatropica.2017.08.006

Soccol, C. R., Pollom, T. E., Fendrich, R. C., Prochmann, F. A., Mohan, R., Blaskowski, M. M. M., ... & Soccol, V. T. (2009). Development of a low cost bioprocess for endotoxin production by Bacillus thuringiensis var israelensis intended for biological control of Aedes aegypti. Brazilian Archives of Biology and Technology, 52(SPE), 121-130. https://doi.org/10.1590/S1516-89132009000700017

Tan, F., Zhu, J., Tang, J., Tang, X., Wang, S., Zheng, A., & Li, P. (2009). Cloning and characterization of two novel crystal protein genes, cry54Aa1 and cry30Fa1, from Bacillus thuringiensis strain BtMC28. Current microbiology, 58(6), 654-659. https://doi.org/10.1007/s00284-009-9386-y

Tissera, H. A., Samaraweera, P. C., Jayamanne, B. D. W., Janaki, M. D. S., U Chulasiri, M. P. P., Rodrigo, C., & Fernando, S. D. (2018). Use of Bacillus thuringiensis israelensis in integrated vector control of Aedes sp. in Sri Lanka: a prospective controlled effectiveness study. Tropical Medicine & International Health, 23(2), 229-235. https://doi.org/10.1111/tmi.13015

Van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of invertebrate pathology, 101(1), 1-16. https://doi.org/10.1016/j.jip.2009.02.009

Van Frankenhuyzen, K. (2013). Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. Journal of Invertebrate Pathology, 114(1), 76-85. https://doi.org/10.1016/j.jip.2013.05.010

Viana, J. L., Soares-da-Silva, J., Vieira-Neta, M. R. A., Tadei, W. P., Oliveira, C. D., Abdalla, F. C., ... & Pinheiro, V. C. S. (2021). Isolates of Bacillus thuringiensis from Maranhão biomes with potential insecticidal action against Aedes aegypti larvae (Diptera, Culicidae). Brazilian Journal of Biology, 81(1), 114-124. https://doi.org/10.1590/1519-6984.223389

Vieira-Neta, M. R. A., Soares-da-Silva, J., Viana, J. L., Silva, M. C., Tadei, W. P., & Pinheiro, V. C. S. (2020). Strain of Bacillus thuringiensis from Restinga, toxic to Aedes (Stegomyia) aegypti (Linnaeus) (Diptera, Culicidae). Brazilian Journal of Biology, (AHEAD). https://doi.org/10.1590/1519-6984.228790

Wang, J., Boets, A., Van Rie, J., & Ren, G. (2003). Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. Journal of Invertebrate Pathology, 82(1), 63-71. https://doi.org/10.1016/s0022-2011(02)00202-1

World Health Organization. (1985). Informal consultation on the development of Bacillus sphaericus as microbial larvicide. Geneva: UNDP: World Bank: WHO, 24p. Special Programme for Research and Training in Tropical Diseases (TDR).

Yamamoto, T., & Dean, D. H. (2000). Insecticidal proteins produced by bacteria pathogenic to agricultural pests. In Entomopathogenic bacteria: from laboratory to field application (pp. 81-100). Springer, Dordrecht.

Zhong, W., Shou, Y., Yoshida, T. M., & Marrone, B. L. (2007). Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis by using pulsed-field gel electrophoresis. Applied and environmental microbiology, 73(10), 3446-3449. https://doi.org/10.1128/AEM.02478-06

Zogo, B., Tchiekoi, B. N. C., Koffi, A. A., Dahounto, A., Alou, L. P. A., Dabiré, R. K., ... & Pennetier, C. (2019). Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae. Malaria journal, 18(1), 1-9. https://doi.org/ 10.1186 / s12936-019-2687-0

Downloads

Publicado

30/06/2021

Como Citar

VIANA, J. L. .; LOBO, K. dos S. .; VIEIRA NETA, M. dos R. A. .; DUARTE, I. C. S. .; DELFORNO, T. P. .; SILVA, J. S. da .; PINHEIRO, V. C. S. .; ROQUE, R. A. .; TADEI, W. P. . Técnicas de identificação e meios de cultivo para crescimento de Bacillus thuringiensis utilizados no controle de mosquitos vetores: Mini revisão. Research, Society and Development, [S. l.], v. 10, n. 7, p. e51510716916, 2021. DOI: 10.33448/rsd-v10i7.16916. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16916. Acesso em: 22 dez. 2024.

Edição

Seção

Ciências Agrárias e Biológicas