Synthesis and characterization of iron oxide nanoparticles: A proposal for experimental activity

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17184

Keywords:

Experimentation; Nanomaterials; Chemistry teaching.

Abstract

This work aims to present a methodology for the synthesis and characterization of iron oxide nanoparticles as a tool to teach scientific concepts about nanomaterials for higher education. The justification for the inclusion of such experimental activity in practical chemistry classes is due to the revolution that has been taking place in the development of materials and devices on a nanometric scale and in its vast field of application. More specifically, magnetic nanoparticles are important in several areas, as they have potential for improvement in production technologies, electronic materials, in the telecommunications sector, in biomedicine, in the remediation of the environment, among others. Using inputs with a low level of toxicity, easy access and low cost, the proposed methodology uses easy-to-handle techniques to obtain nanoparticles, as well as accessible tests for characterization. As a result, it is expected that the insertion of this activity will allow the discussion of scientific, technological and social concepts related to nanomaterials, as well as the understanding of the precipitation method for the synthesis of nanoparticles, and of the analytical tests for characterization. It is expected that this activity will promote the introduction of basic concepts of nanoscience and nanotechnology, which are present in the contemporary world, and which should be brought to the classroom.

References

Andrade, Â. L., Souza, D. M., Pereira, M. C., Fabris, J. D., & Domingues, R. Z. (2010). pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method. Quimica Nova, 33(3), 524-527. https://doi.org/10.1590/S0100-40422010000300006

Barnakov, Y. A., Scott, B. L., Golub, V., Kelly, L., Reddy, V., & Stokes, K. L. (2004). Spectral dependence of Faraday rotation in magnetite-polymer nanocomposites. Journal of Physics and Chemistry of Solids, 65(5), 1005-1010. https://doi.org/10.1016/j.jpcs.2003.10.070

Caamaño, A. (2004). Experiencias, experimentos ilustrativos, ejercicios prácticos e investigaciones: una clasificación útil de los trabajos prácticos. Alambique, 39(8), 19.

Chamritski, I., & Burns, G. (2005). Infrared-and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. The Journal of Physical Chemistry B, 109(11), 4965-4968. https://doi.org/10.1021/jp048748h

Cherepy, N. J., Liston, D. B., Lovejoy, J. A., Deng, H., & Zhang, J. Z. (1998). Ultrafast studies of photoexcited electron dynamics in -and -Fe2O3 semiconductor nanoparticles. The Journal of Physical Chemistry B, 102(5), 770-776. https://doi.org/10.1021/jp973149e

Chiu, H. T., Chang, C. Y., Chiang, T. Y., Kuo, M. T., & Wang, Y. H. (2011). Using analytical centrifugation to characterize the dispersibility and particle size distributions of organic/inorganic composite coatings. Journal of Polymer Research, 18(6), 1587-1596.

Davies, T., Lorne, C., & Sealey-Huggins, L. (2019). Instagram photography and the geography field course: snapshots from Berlin. Journal of Geography in Higher Education, 43(3), 362-383. https://doi.org/10.1080/03098265.2019.1608428

Dorney, K. M., Baker, J. D., Edwards, M. L., Kanel, S. R., O’Malley, M., & Pavel Sizemore, I. E. (2014). Tangential flow filtration of colloidal silver nanoparticles: a “green” laboratory experiment for chemistry and engineering students. Journal of Chemical Education, 91(7), 1044-1049.

https://doi.org/10.1021/ed400686u

Dumestre, F., Martinez, S., Zitoun, D., Fromen, M-C., Casanove, M-J., Lecante, P., Respaud, M., Serres, A., Benfield, R. E., Amiens, C., & Chaudret, B. (2004). Magnetic nanoparticles through organometallic synthesis: evolution of the magnetic properties from 35 isolated nanoparticles to organised nanostructures. Faraday Discuss., 125, p. 265 – 278. https://doi.org/10.1039/B303376G

Fernandes, M. T. C., & Kawachi, E. Y. (2010). Influência da quantidade de amônio na síntese de nanopartículas de óxido de ferro por microemulsão. Química Nova, 33(6), 1242-1246. https://doi.org/10.1590/S0100-40422010000600004

Ferreira, G. R., Segura, T., Souza, F. G. J., Umpierre, A. P., & Machado, F. (2012). Synthesis of poly (vinyl acetate)-based magnetic polymer microparticles. European polymer journal, 48(12), 2050-2069. https://doi.org/10.1016/j.eurpolymj.2012.09.003

Gonçalves, F. P., & Marques, C. A. (2016). Contribuições pedagógicas e epistemológicas em textos de experimentação no ensino de química. Investigações em Ensino de Ciências, 11(2), 219-238.

Gonçalves, M., Castro, C. S. D., Oliveira, L. C., & Guerreiro, M. C. (2009). Síntese e caracterização de nanopartículas de óxido de ferro suportadas em matriz carbonácea: remoção do corante orgânico azul de metileno em água. Química Nova, 32(7), 1723-1726. https://doi.org/10.1590/S0100-40422009000700008

Halfen, R. A. P., Merlo, A. A, Raupp, D. & Nachtigall, S. M. B. (2020). Experimentos químicos em sala de aula utilizando recursos multimídia: uma proposta de aulas demonstrativas para o ensino de Química Orgânica. Revista Electrónica de Enseñanza de las Ciencias, 19(2), 270-294.

Recuperado de: http://reec.uvigo.es/volumenes/volumen19/REEC_19_2_2_ex1505_35F.pdf

He, Y. P., Miao, Y. M., Li, C. R., Wang, S. Q., Cao, L., Xie, S. S., & Burda, C. (2005). Size and structure effect on optical transitions of iron oxide nanocrystals. Physical review B, 71(12), 125411. Recuperado de: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.125411

Hong, R., Cima, M. J., Weissleder, R., & Josephson, L. (2008). Magnetic microparticle aggregation for viscosity determination by MR. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 59(3), 515-520. https://doi.org/10.1002/mrm.21526

Kalska-Szostko, B., Wykowska, U., Satula, D., & Nordblad, P. (2015). Thermal treatment of magnetite nanoparticles. Beilstein journal of nanotechnology, 6(1), 1385-1396. Recuperado de: https://www.beilstein-journals.org/bjnano/articles/6/143

Kurtz, F. D., Vargas, R. S. de, & Moura, R. O. (2018). Tecnologias e formação de professores de línguas: além de uma perspectiva técnica. Afluente. In Revista de Letras e Linguística, 3(7), 139-158. Recuperado de: http://www.periodicoseletronicos.ufma.br/index.php/afluente/article/view/9152

Lêdo, J. (2006). Questões bioéticas suscitadas pela nanotecnologia. 2006. 120f (Doctoral dissertation, Dissertação (Mestrado em Bioética) –Centro Universitário São Camilo, São Paulo).

Leite, B. S. (2018). A experimentação no ensino de química: uma análise das abordagens nos livros didáticos. Educación química, 29(3), 61-78.

http://doi.org/10.22201/fq.18708404e.2018.3.63726

Leite, I. S., Lourenço, A. B., Licio, J. G., & Hernandes, A. C. (2013). Uso do método cooperativo de aprendizagem Jigsaw adaptado ao ensino de nanociência e nanotecnologia. Revista Brasileira de Ensino de Física, 35(4), 4504. http://dx.doi.org/10.1590/S1806-11172013000400015

Litter, M. I., & Blesa, M. A. (1992). Photodissolution of iron oxides. IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media. Canadian Journal of Chemistry, 70(9), 2502-2510. https://doi.org/10.1139/v92-316

Lu, A. H., Salabas, E. E., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), 1222-1244. https://doi.org/10.1002/anie.200602866

Mascolo, M. C., Pei, Y., & Ring, T. A. (2013). Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials, 6(12), 5549-5567. https://doi.org/10.3390/ma6125549

Melo, M. A. J., Santos, L. S. S., Gonçalves, M. D. C., & Nogueira, A. F. (2012). Preparação de nanopartículas de prata e ouro: um método simples para a introdução da nanociência em laboratório de ensino. Química nova, 35(9), 1872-1878. https://doi.org/10.1590/S0100-40422012000900030

Melo Jr, M. A., Santos, L. S. S., Gonçalves, M. D. C., & Nogueira, A. F. (2012). Preparação de nanopartículas de prata e ouro: um método simples para a introdução da nanociência em laboratório de ensino. Química nova, 35(9), 1872-1878.

Melo, R. L. F., Souza, I. C. C., Carvalho, A. J. R., Bezerra, E. M., & Costa, R. F. (2020). Nanoparticles as biological tools: an exploratory review. Research, Society and Development, 9(7), e363974155. https://doi.org/10.33448/rsd-v9i7.4155

Nyquist, R. A., & Kagel, R. O. (2012). Handbook of infrared and raman spectra of inorganic compounds and organic salts: infrared spectra of inorganic compounds (Vol. 4). Academic press.

Oliveira, L. A. (2002). Valores deslizantes: esboço de um ensaio sobre técnica e poder. In O avesso da liberdade. São Paulo: Companhia das Letras, 507-519.

Oliver-Hoyo, M., & Gerber, R. W. (2007). From the research bench to the teaching laboratory: Gold nanoparticle layering. Journal of chemical education, 84(7), 1174. https://doi.org/10.1021/ed084p1174

Orbaek, A. W., McHale, M. M., & Barron, A. R. (2015). Synthesis and characterization of silver nanoparticles for an undergraduate laboratory. Journal of Chemical Education, 92(2), 339-344. https://doi.org/10.1021/ed500036b

Pereira, F. D., Honório, K. M., & Sannomiya, M. (2010). Nanotecnologia: desenvolvimento de materiais didáticos para uma abordagem no ensino fundamental. Química Nova na Escola, 32(2), 73-77. Recuperado de: http://qnesc.sbq.org.br/online/qnesc32_2/03-QS-6609.pdf

Prsybyciem, M. M., Silveira, R. M. C. F., & Sauer, E. (2018). Experimentação investigativa no ensino de química em um enfoque CTS a partir de um tema sociocientífico no ensino médio. Revista Electrónica de Enseñanza de las Ciencias, 17(3), 602-625.

Recuperado de: http://reec.uvigo.es/volumenes/volumen17/REEC_17_3_5_ex1433.pdf

Qu, S., Yang, H., Ren, D., Kan, S., Zou, G., Li, D., & Li, M. (1999). Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. Journal of colloid and interface science, 215(1), 190-192. https://doi.org/10.1006/jcis.1999.6185

Raupp, D. T., Prochnow, T. R., & Del Pino, J. C. (2020). História e contextualização no ensino de estereoquímica: uma proposta de abordagem para o ensino médio. Revista Contexto & Educação, 35(112), 432-455. https://doi.org/10.21527/2179-1309.2020.112.432-455

Ruggeri, G., Covolan, V. L., Bernabò, M., Li, L. M., Valadares, L. F., Leite, C. A., & Galembeck, F. (2013). Metal nanostructures with magnetic and biodegradable properties for medical applications. Journal of the Brazilian Chemical Society, 24(2), 191-200.

http://dx.doi.org/10.5935/0103-5053.20130025

Saeidian, H., Moghaddam, F. M., Pourjavadi, A., Barzegar, S., Soleyman, R., & Sohrabi, A. (2009). Superabsorbent polymer as nanoreactors for preparation of hematite nanoparticles and application of the prepared nanocatalyst for the Friedel-Crafts acylation. Journal of the Brazilian Chemical Society, 20(3), 466-471. https://doi.org/10.1590/S0103-50532009000300009

Salado, J., Insausti, M., Lezama, L., Gil de Muro, I., Goikolea, E., & Rojo, T. (2011). Preparation and characterization of monodisperse Fe3O4 nanoparticles: an electron magnetic resonance study. Chemistry of Materials, 23(11), 2879-2885. https://doi.org/10.1021/cm200253k

Santos, J. B. J., Benedetti, E. F., Donizeti, A., Cavagis, M., & Anunciação, E. A. (2016). Um estudo comparativo entre a atividade experimental e a simulação por computador na aprendizagem de eletroquímica. Revista Electrónica de Enseñanza de las Ciencias, 15(2), 312-330.

Recuperado de: http://reec.uvigo.es/volumenes/volumen15/REEC_15_2_8_ex1045.pdf

Santoyo Salazar, J., Perez, L., Abril, O., Truong Phuoc, L., Ihiawakrim, D., Vazquez, M., Greneche J.-M., Begin-colin S., & Pourroy, G. (2011). Magnetic iron oxide nanoparticles in 10−40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chemistry of materials, 23(6), 1379-1386. https://doi.org/10.1021/cm103188a

Schwertmann, U., & Cornell, R. M. (1991) Iron oxides in the laboratory: preparation and characterization, Cambridge.

Shan, Z., Yang, W. S., Zhang, X., Huang, Q. M., & Ye, H. (2007). Preparation and characterization of carboxyl-group functionalized superparamagnetic nanoparticles and the potential for bio-applications. Journal of the Brazilian Chemical Society, 18(7), 1329-1335.

https://dx.doi.org/10.1590/S0103-50532007000700006

Siqueira-Batista, R., Maria-Da-Silva, L., Souza, R. R. D. M., Pires-Do-Prado, H. J., Silva, C. A. D., Rôças, G., & Helayël-Neto, J. A. (2010). Nanociência e nanotecnologia como temáticas para discussão de ciência, tecnologia, sociedade e ambiente. Ciência & Educação (Bauru), 16(2), 479-490.

https://doi.org/10.1590/S1516-73132010000200014

Souza, F. G., Marins, J. A., Pinto, J. C., de Oliveira, G. E., Rodrigues, C. M., & Lima, L. M. T. (2010). Magnetic field sensor based on a maghemite/polyaniline hybrid material. Journal of Materials Science, 45(18), 5012-5021. https://doi.org/10.1590/0104-1428.2397

Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224

Toma, H. E. (2005). Interfaces e organização da pesquisa no Brasil: da Química à Nanotecnologia. Química Nova, 28, S48-S51.

https://doi.org/10.1590/S0100-40422005000700010

Tonet, M. D., & Leonel, A. A. (2019). Nanociência e Nanotecnologia: uma revisão bibliográfica acerca das contribuições e desafios para o ensino de Física. Caderno Brasileiro de Ensino de Física, 36(2), 431-456.

Wang, B., Wei, Q., & Qu, S. (2013). Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int. J. Electrochem. Sci, 8(3), 3786-3793. Recuperado de: http://www.electrochemsci.org/papers/vol8/80303786.pdf

Wendlandt, W. W., & Hecht, H. G. (1966). Reflectance spectroscopy (Vol. 21). Interscience Publishers.

Winkelmann, K., Noviello, T., & Brooks, S. (2007). Preparation of CdS nanoparticles by first-year undergraduates. Journal of chemical education, 84(4), 709. https://doi.org/10.1021/ed084p709

Zhu, J., Wang, P. C., & Lu, M. (2013). β-Cyclodextrin coated Fe3O4 nanoparticles: a simple preparation and application for selective oxidation of alcohols in water. Journal of the Brazilian Chemical Society, 24(1), 171-176. https://doi.org/10.1590/S0103-50532013000100021

Published

12/07/2021

How to Cite

LAVAYEN, V. .; RAUPP, D. T. .; SCHISSLER, C. .; EINLOFT, S. M. O. .; NATIVIDADE, L. A. .; VAZ, A. L. Synthesis and characterization of iron oxide nanoparticles: A proposal for experimental activity . Research, Society and Development, [S. l.], v. 10, n. 8, p. e27310817184, 2021. DOI: 10.33448/rsd-v10i8.17184. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17184. Acesso em: 22 nov. 2024.

Issue

Section

Educational Objects