Zinc oxide polymeric nanocomposite membranes for wastewater treatment: Literature review
DOI:
https://doi.org/10.33448/rsd-v10i8.17402Keywords:
Polymeric membranes; Phase inversion; Nanocomposites; Wastewater treatment.Abstract
The need to apply cleaner technologies for effluent and water treatment is the key to minimize the impacts caused to the environment and recovery of water resources. Among these technologies the membrane technology stands out because it has advantages such as energy savings, easy operation, replacing conventional processes, recovering products with high added value, flexibility in the design of systems and in the development of hybrid processes. This paper aims to perform a review of the process of separation by membranes, method of obtaining and recent studies that use zinc oxide (ZnO) as an inorganic load to obtain nanocomposite membranes. Hybrid membranes have been conquering space in the scientific environment because they present improvements in physical, mechanical and chemical properties. From the studies performed by researchers, it was found that ZnO has been incorporated as a load to obtain polymeric nanocomposite membranes, because it presents improvements in their hydrophilicity, water flow, reduced fouling and chlorine resistance characteristics of the membranes obtained, thus presenting potential to be applied in wastewater treatment.
References
Agboola, O., Sunday Isaac Fayomi, O., Sadiku, R., Popoola, P., Adeniyi Alaba, P., & Adegbola, A. T. (2020). Polymers blends for the improvement of nanofiltration membranes in wastewater treatment: A short review. Materials Today: Proceedings, 43, 3365–3368. https://doi.org/10.1016/j.matpr.2020.05.387
Altun, V., Remigy, J. C., & Vankelecom, I. F. J. (2017). UV-cured polysulfone-based membranes: Effect of co-solvent addition and evaporation process on membrane morphology and SRNF performance. Journal of Membrane Science, 524, 729–737. https://doi.org/10.1016/j.memsci.2016.11.060
Amini, M., Seifi, M., Akbari, A., & Hosseinifard, M. (2020). Polyamide-zinc oxide-based thin film nanocomposite membranes: Towards improved performance for forward osmosis. Polyhedron, 179, 114362. https://doi.org/10.1016/j.poly.2020.114362
Anadão, P. (2010). Ciência e Tecnologia de Membranas. Artliber Editora Ltda. ISBN: 8588098504
Bellincanta, T., Poletto, P., Thürmer, M. B., Duarte, J., Toscan, A. Zeni, M. (2011). Preparação e caracterização de membranas poliméricas a partir da blenda polisulfona/ poliuretano. Polímeros, v. 21, p. 229-232.https://doi.org/10.1590/S0104-14282011005000045
Brasil, Lei. Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente - Conama. (2011). Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes e altera a Resolução nº 357. http://www.suape.pe.gov.br/images/publicacoes/CONAMA_n.430.2011.pdf
Chinyerenwa, A. C., Wang, H., Zhang, Q., Zhuang, Y., Munna, K. H., Ying, C., Yang, H., & Xu, W. (2018). Structure and thermal properties of porous polylactic acid membranes prepared via phase inversion induced by hot water droplets. Polymer, 141, 62–69. https://doi.org/10.1016/j.polymer.2018.03.011
da Silva Barbosa Ferreira, R., Oliveira, S. S. L., Salviano, A. F., Araújo, E. M., Leite, A. M. D., & de Lucena Lira, H. (2019). Polyethersulfone hollow fiber membranes developed for oily emulsion treatment. Materials Research, 22, 1–8. https://doi.org/10.1590/1980-5373-MR-2018-0854
de Medeiros, K. M., Araújo, E. M., Lira, H. de L., Lima, D. de F., & Lima, C. A. P. de. (2017). Membranas microporosas híbridas assimétricas: Influência da argila na morfologia das membranas. Revista Materia, 22(2). https://doi.org/10.1590/S1517-707620170002.0144
Dinari, M., & Haghighi, A. (2018). Ultrasound-assisted synthesis of nanocomposites based on aromatic polyamide and modified ZnO nanoparticle for removal of toxic Cr(VI) from water. Ultrasonics Sonochemistry, 41(July 2017), 75–84. https://doi.org/10.1016/j.ultsonch.2017.09.023
El-Arnaouty, M. B., Abdel Ghaffar, A. M., Eid, M., Aboulfotouh, M. E., Taher, N. H., & Soliman, E.-S. (2018). Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. Journal of Radiation Research and Applied Sciences, 11(3), 204–216. https://doi.org/10.1016/j.jrras.2018.01.005
Esfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., Escobar, I. C., Abolhassani, M., Greenlee, L. F., Esfahani, A. R., Sadmani, A., & Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213(September 2018), 465–499. https://doi.org/10.1016/j.seppur.2018.12.050
Fathollah, P., Mortazavi. Y., Jafari. S. H., Khodadadi. A. (2015) Combination of plasma functionalization and phase inversion process techniques for efficient dispersion of MWCNTs in polyamide 6: assessment through morphological, electrical, rheological and thermal properties. Polymer-Plastics Technology and Engineering, v. 54, p. 632-638. https://doi.org/10.1080/03602559.2014.974269
Field, R. W. & Lipnizki, F. Membrane Separation Processes An Overview. In: Field, R. W., Bekassy-Molnar, E., Lipnizki, F., & Vatai, G. (2017). Engineering Aspects of Membrane Separation and Application in Food Processing, Boca Raton: CRC Press, ISBN 9781420083637
Fonseca Couto, C., Lange, L. C., & Santos Amaral, M. C. (2018). A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. Journal of Water Process Engineering (Vol. 26, p. 156–175). Elsevier Ltd. https://doi.org/10.1016/j.jwpe.2018.10.010
Gebreslase, G. A. (2018). Review on Membranes for the Filtration of Aqueous Based Solution: Oil in Water Emulsion. Journal of Membrane Science & Technology, 08(02). https://doi.org/10.4172/2155-9589.1000188
Ghanbari Shohany, B., & Khorsand Zak, A. (2020). Doped ZnO nanostructures with selected elements - Structural, morphology and optical properties: A review. In Ceramics International (Vol. 46, Número 5, p. 5507–5520). Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2019.11.051
Goh, P. S., & Ismail, A. F. (2018). A review on inorganic membranes for desalination and wastewater treatment. In Desalination (Vol. 434, p. 60–80). Elsevier B.V. https://doi.org/10.1016/j.desal.2017.07.023
Gohil, J. M., & Ray, P. (2017). A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination. In Separation and Purification Technology (Vol. 181, p. 159–182). Elsevier B.V. https://doi.org/10.1016/j.seppur.2017.03.020
Habert, A. C.; Borges C. P. & Nobrega, R. (2006) Processos de Separação por Membranas. Rio de Janeiro: E-papers. ISBN: 85-7650-085-X
Hairom, N. H. H., Mohammad, A. W., & Kadhum, A. A. H. (2014). Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Separation and Purification Technology, 137, 74–81. https://doi.org/10.1016/j.seppur.2014.09.027
He, X., Chen, C., Jiang, Z., & Su, Y. (2011). Computer simulation of formation of polymeric ultrafiltration membrane via immersion precipitation. Journal of Membrane Science, 371(1–2), 108–116. https://doi.org/10.1016/j.memsci.2011.01.016
Hendricks. D. (2011). Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological. Boca Raton: IWA Publishing. ISBN: 13: 978-1-4200-6192-5
Isawi, H. (2018). Development of thin-film composite membranes via radical grafting with methacrylic acid/ ZnO doped TiO2 nanocomposites. Reactive and Functional Polymers, 131(September), 400–413. https://doi.org/10.1016/j.reactfunctpolym.2018.08.018
Iulianelli, A., & Drioli, E. (2020). Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. In Fuel Processing Technology (Vol. 206, p. 106464). Elsevier B.V. https://doi.org/10.1016/j.fuproc.2020.106464
Kahouli, M., Barhoumi, A., Bouzid, A., Al-Hajry, A.,Guermazi, S. (2015). Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. In Superlattices and Microstructures (Vol. 85, p. 7–23). Academic Press. https://doi.org/10.1016/j.spmi.2015.05.007
Kausar. A .(2017) Phase inversion technique-based polyamide films and their applications: a comprehensive review. Polymer-Plastics Technology and Engineering, v. 56, p. 1421-1437. https://doi.org/10.1080/03602559.2016.1276593
Kazemi, F., Jafarzadeh, Y., Masoumi, S., & Rostamizadeh, M. (2021). Oil-in-water emulsion separation by PVC membranes embedded with GO-ZnO nanoparticles. Journal of Environmental Chemical Engineering, 9(1), 104992. https://doi.org/10.1016/j.jece.2020.104992
Khulbe, C. K., Feng, C.Y., Matsuura, T.( 2008) Synthetic polymeric membranes: characterization by atomic force microscopy. Berlin: Springer. ISBN: 978-3-540-73994-4
Leo, C. P., Cathie Lee, W. P., Ahmad, A. L., & Mohammad, A. W. (2012). Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Separation and Purification Technology, 89, 51–56. https://doi.org/10.1016/j.seppur.2012.01.002
Marana, N. L.; Sambrano, J. R.; Souza, A. R. (2010). Propriedades eletrônicas, estruturais e constantes elásticas do ZnO. Química Nova, v. 33, p. 810-815. https://doi.org/10.1590/S0100-40422010000400009
Matsuyama, H., Takida, Y., Maki, T., & Teramoto, M. (2002). Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation. Polymer, 43(19), 5243–5248. https://doi.org/10.1016/S0032-3861(02)00409-3
Mayrinck, C.; Raphael, E.; Ferrari, J. L.; Schiavon, M. A. (2014). Síntese, propriedades e aplicações de óxido de zinco nanoestruturado. Revista Virtual de Química. v. 6, p. 1185-1204. DOI:10.5935/1984-6835.20140078
Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. In Ceramics International (Vol. 43, Número 1, p. 907–914). Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2016.10.051
Mishra, Y. K., & Adelung, R. (2018). ZnO tetrapod materials for functional applications. In Materials Today (Vol. 21, Número 6, p. 631–651). Elsevier B.V. https://doi.org/10.1016/j.mattod.2017.11.003
Mulder, M. (1996) Basic Principles of Membrane Technology. Springer Netherlands. Second Edition. Kluwer Academic Publishers. IBSN:079234247X
Nasrollahi, N., Vatanpour, V., Aber, S., & Mahmoodi, N. M. (2018). Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Separation and Purification Technology, 192(June 2017), 369–382. https://doi.org/10.1016/j.seppur.2017.10.034
Nath, K. (2017). Membrane Separation Processes. Second Edition, Delhi: PHI Learning. ISBN: 978-81-2035291-9
Naz, M. Y., Ahmad, S., Shukrullah, S., Altaf, N. U. H., & Ghaffar, A. (2020). Effect of microwave plasma treatment on membrane structure of polysulfone fabricated using phase inversion method. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.04.522
Obreja, P., Cristea, D., Dinescu, A., & Romaniţan, C. (2019). Influence of surface substrates on the properties of ZnO nanowires synthesized by hydrothermal method. In Applied Surface Science (Vol. 463, p. 1117–1123). Elsevier B.V. https://doi.org/10.1016/j.apsusc.2018.08.191
Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchicov, M. A., Dogan, S., Avrutin, V., Cho, S. J., Morkoç, H. (2005). A Comprehensive review of ZnO materials and devices. Journal of Applied Physics, v. 98, p. 1-104. https://doi.org/10.1063/1.1992666
Pabby, A. K., Rizvi, S. S. H. & Sastre, A. M. (2015). Handbook of Membrane Separations, Boca Raton: CRC Press. IBSN: 13: 978-1-4665-5558-7
Pal, N., Agarwal, M., Maheshwari, K., & Solanki, Y. S. (2020). A review on types, fabrication and support material of hydrogen separation membrane. Materials Today: Proceedings, 28, 1386–1391. https://doi.org/10.1016/j.matpr.2020.04.806
Pan, Z., Song, C., Li, L., Wang, H., Pan, Y., Wang, C., Li, J., Wang, T., & Feng, X. (2019). Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects. Chemical Engineering Journal, 376, 120909. https://doi.org/10.1016/j.cej.2019.01.188
Park, H. G., & Khang, D. Y. (2016). Asymmetric porous membranes from binary polymer solution by physical gelation induced phase separation. Polymer, 87, 323–329. https://doi.org/10.1016/j.polymer.2016.02.016
Ponnamma, D., Cabibihan, J. J., Rajan, M., Pethaiah, S. S., Deshmukh, K., Gogoi, J. P., Pasha, S. K. K., Ahamed, M. B., Krishnegowda, J., Chandrashekar, B. N., Polu, A. R., & Cheng, C. (2019). Synthesis, optimization and applications of ZnO/polymer nanocomposites. Materials Science and Engineering C, 98(December 2018), 1210–1240. https://doi.org/10.1016/j.msec.2019.01.081
Rajakumaran, R., Boddu, V., Kumar, M., Shalaby, M. S., Abdallah, H., & Chetty, R. (2019a). Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination, 467(June), 245–256. https://doi.org/10.1016/j.desal.2019.06.018
Rajakumaran, R., Boddu, V., Kumar, M., Shalaby, M. S., Abdallah, H., & Chetty, R. (2019b). Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination, 467, 245–256. https://doi.org/10.1016/j.desal.2019.06.018
Rajakumaran, R., Kumar, M., & Chetty, R. (2020). Morphological effect of ZnO nanostructures on desalination performance and antibacterial activity of thin-film nanocomposite (TFN) membrane. Desalination, 495(April), 114673. https://doi.org/10.1016/j.desal.2020.114673
Shaban, M., AbdAllah, H., Said, L., Hamdy, H. S., & Abdel Khalek, A. (2015). Titanium dioxide nanotubes embedded mixed matrix PES membranes characterization and membrane performance. Chemical Engineering Research and Design, 95, 307–316. https://doi.org/10.1016/j.cherd.2014.11.008
Sridhar, S., Moulik, S. Tackling Challenging Industrial Separation Problems through Membrane Technology. In: Sridhar, S., Moulik, S. Membrane Processes Pervaporation, Vapor Permeation and Membrane Distillation for Industrial Scale Separations. Hoboken: John Wiley & Sons, 2019. ISBN: 978-1-119-41835-1
Takht Ravanchi, M., Kaghazchi, T., & Kargari, A. (2009). Application of membrane separation processes in petrochemical industry: a review. Desalination, 235(1–3), 199–244. https://doi.org/10.1016/j.desal.2007.10.042
Tawalbeh, M., Al Mojjly, A., Al-Othman, A., & Hilal, N. (2018). Membrane separation as a pre-treatment process for oily saline water. In Desalination (Vol. 447, p. 182–202). Elsevier B.V. https://doi.org/10.1016/j.desal.2018.07.029
Torres-Trueba, A., Ruiz-Treviño, F. A., Luna-Bárcenas, G., & Ortiz-Estrada, C. H. (2008). Formation of integrally skinned asymmetric polysulfone gas separation membranes by supercritical CO2. Journal of Membrane Science, 320(1–2), 431–435. https://doi.org/10.1016/j.memsci.2008.04.024
Uragami, T. Science and Technology of Separation Membranes. Chichester: John Wiley & Sons Ltd, 2017. ISBN:9781118932544
Wu, Y., Gao, M., Chen, W., Lü, Z., Yu, S., Liu, M., & Gao, C. (2020). Efficient removal of anionic dye by constructing thin-film composite membrane with high perm-selectivity and improved anti-dye-deposition property. Desalination, 476, 114228. https://doi.org/10.1016/j.desal.2019.114228
Yong, W. F., & Zhang, H. (2021). Recent advances in polymer blend membranes for gas separation and pervaporation. In Progress in Materials Science (Vol. 116, p. 100713). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2020.100713
Zang, Z., & Tang, X. (2015). Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method. Journal of Alloys and Compounds, 619, 98–101. https://doi.org/10.1016/j.jallcom.2014.09.072
Zhang, X., Wang, Y., Liu, Y., Xu, J., Han, Y., & Xu, X. (2014). Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Applied Surface Science, 316(1), 333–340. https://doi.org/10.1016/j.apsusc.2014.08.004
Zhu, L., Song, H., Wang, G., Zeng, Z., & Xue, Q. (2018). Symmetrical polysulfone/poly(acrylic acid) porous membranes with uniform wormlike morphology and pH responsibility: Preparation, characterization and application in water purification. Journal of Membrane Science, 549, 515–522. https://doi.org/10.1016/j.memsci.2017.12.052
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 José Everton Soares de Souza; Bruna Aline Araújo; Kênia Kelly Freitas Sarmento ; Larissa Dias Rebouças; Keila Machado de Medeiros; Carlos Antônio Pereira de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.