Membranas de nanocompósitos poliméricos com óxido de zinco para o tratamento de efluentes: Revisão de literatura

Autores

DOI:

https://doi.org/10.33448/rsd-v10i8.17402

Palavras-chave:

Membranas híbridas; Inversão de fases; Nanocompósitos; Tratamento de efluentes.

Resumo

A necessidade de aplicação de tecnologias mais limpas para o tratamento de efluente e águas são a chave para minimizar os impactos causados ao meio ambiente e recuperação dos recursos hídricos. Dentre essas tecnologias se destacam a tecnologia de membranas pois apresentam vantagens como economia de energia, de fácil operação, substitui os processos convencionais, recupera produtos de alto valor agregado, apresenta flexibilidade no projeto de sistemas e no desenvolvimento de processos híbridos. Este trabalho tem como objetivo realizar uma revisão do processo de separação por membranas, método de obtenção e estudos recentes que utilizam o óxido de zinco (ZnO) como carga inorgânica para obtenção de membranas de nanocompósitos. Membranas híbridas vêm conquistando espaço no meio científico pois apresentam melhorias em propriedade físicas, mecânicas e químicas.  A partir dos estudos realizados pelos pesquisadores, foi constatado que o ZnO vem sendo incorporado como carga para a obtenção de membranas de nanocompósitos poliméricos, pois apresentam melhorias em sua hidrofilicidade, fluxo de água, diminuição da incrustação e as características de resistência ao cloro das membranas obtidas, e desta forma, apresentado potencial para serem aplicadas no tratamento de efluentes.

Referências

Agboola, O., Sunday Isaac Fayomi, O., Sadiku, R., Popoola, P., Adeniyi Alaba, P., & Adegbola, A. T. (2020). Polymers blends for the improvement of nanofiltration membranes in wastewater treatment: A short review. Materials Today: Proceedings, 43, 3365–3368. https://doi.org/10.1016/j.matpr.2020.05.387

Altun, V., Remigy, J. C., & Vankelecom, I. F. J. (2017). UV-cured polysulfone-based membranes: Effect of co-solvent addition and evaporation process on membrane morphology and SRNF performance. Journal of Membrane Science, 524, 729–737. https://doi.org/10.1016/j.memsci.2016.11.060

Amini, M., Seifi, M., Akbari, A., & Hosseinifard, M. (2020). Polyamide-zinc oxide-based thin film nanocomposite membranes: Towards improved performance for forward osmosis. Polyhedron, 179, 114362. https://doi.org/10.1016/j.poly.2020.114362

Anadão, P. (2010). Ciência e Tecnologia de Membranas. Artliber Editora Ltda. ISBN: 8588098504

Bellincanta, T., Poletto, P., Thürmer, M. B., Duarte, J., Toscan, A. Zeni, M. (2011). Preparação e caracterização de membranas poliméricas a partir da blenda polisulfona/ poliuretano. Polímeros, v. 21, p. 229-232.https://doi.org/10.1590/S0104-14282011005000045

Brasil, Lei. Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente - Conama. (2011). Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes e altera a Resolução nº 357. http://www.suape.pe.gov.br/images/publicacoes/CONAMA_n.430.2011.pdf

Chinyerenwa, A. C., Wang, H., Zhang, Q., Zhuang, Y., Munna, K. H., Ying, C., Yang, H., & Xu, W. (2018). Structure and thermal properties of porous polylactic acid membranes prepared via phase inversion induced by hot water droplets. Polymer, 141, 62–69. https://doi.org/10.1016/j.polymer.2018.03.011

da Silva Barbosa Ferreira, R., Oliveira, S. S. L., Salviano, A. F., Araújo, E. M., Leite, A. M. D., & de Lucena Lira, H. (2019). Polyethersulfone hollow fiber membranes developed for oily emulsion treatment. Materials Research, 22, 1–8. https://doi.org/10.1590/1980-5373-MR-2018-0854

de Medeiros, K. M., Araújo, E. M., Lira, H. de L., Lima, D. de F., & Lima, C. A. P. de. (2017). Membranas microporosas híbridas assimétricas: Influência da argila na morfologia das membranas. Revista Materia, 22(2). https://doi.org/10.1590/S1517-707620170002.0144

Dinari, M., & Haghighi, A. (2018). Ultrasound-assisted synthesis of nanocomposites based on aromatic polyamide and modified ZnO nanoparticle for removal of toxic Cr(VI) from water. Ultrasonics Sonochemistry, 41(July 2017), 75–84. https://doi.org/10.1016/j.ultsonch.2017.09.023

El-Arnaouty, M. B., Abdel Ghaffar, A. M., Eid, M., Aboulfotouh, M. E., Taher, N. H., & Soliman, E.-S. (2018). Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. Journal of Radiation Research and Applied Sciences, 11(3), 204–216. https://doi.org/10.1016/j.jrras.2018.01.005

Esfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., Escobar, I. C., Abolhassani, M., Greenlee, L. F., Esfahani, A. R., Sadmani, A., & Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213(September 2018), 465–499. https://doi.org/10.1016/j.seppur.2018.12.050

Fathollah, P., Mortazavi. Y., Jafari. S. H., Khodadadi. A. (2015) Combination of plasma functionalization and phase inversion process techniques for efficient dispersion of MWCNTs in polyamide 6: assessment through morphological, electrical, rheological and thermal properties. Polymer-Plastics Technology and Engineering, v. 54, p. 632-638. https://doi.org/10.1080/03602559.2014.974269

Field, R. W. & Lipnizki, F. Membrane Separation Processes An Overview. In: Field, R. W., Bekassy-Molnar, E., Lipnizki, F., & Vatai, G. (2017). Engineering Aspects of Membrane Separation and Application in Food Processing, Boca Raton: CRC Press, ISBN 9781420083637

Fonseca Couto, C., Lange, L. C., & Santos Amaral, M. C. (2018). A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. Journal of Water Process Engineering (Vol. 26, p. 156–175). Elsevier Ltd. https://doi.org/10.1016/j.jwpe.2018.10.010

Gebreslase, G. A. (2018). Review on Membranes for the Filtration of Aqueous Based Solution: Oil in Water Emulsion. Journal of Membrane Science & Technology, 08(02). https://doi.org/10.4172/2155-9589.1000188

Ghanbari Shohany, B., & Khorsand Zak, A. (2020). Doped ZnO nanostructures with selected elements - Structural, morphology and optical properties: A review. In Ceramics International (Vol. 46, Número 5, p. 5507–5520). Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2019.11.051

Goh, P. S., & Ismail, A. F. (2018). A review on inorganic membranes for desalination and wastewater treatment. In Desalination (Vol. 434, p. 60–80). Elsevier B.V. https://doi.org/10.1016/j.desal.2017.07.023

Gohil, J. M., & Ray, P. (2017). A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination. In Separation and Purification Technology (Vol. 181, p. 159–182). Elsevier B.V. https://doi.org/10.1016/j.seppur.2017.03.020

Habert, A. C.; Borges C. P. & Nobrega, R. (2006) Processos de Separação por Membranas. Rio de Janeiro: E-papers. ISBN: 85-7650-085-X

Hairom, N. H. H., Mohammad, A. W., & Kadhum, A. A. H. (2014). Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Separation and Purification Technology, 137, 74–81. https://doi.org/10.1016/j.seppur.2014.09.027

He, X., Chen, C., Jiang, Z., & Su, Y. (2011). Computer simulation of formation of polymeric ultrafiltration membrane via immersion precipitation. Journal of Membrane Science, 371(1–2), 108–116. https://doi.org/10.1016/j.memsci.2011.01.016

Hendricks. D. (2011). Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological. Boca Raton: IWA Publishing. ISBN: 13: 978-1-4200-6192-5

Isawi, H. (2018). Development of thin-film composite membranes via radical grafting with methacrylic acid/ ZnO doped TiO2 nanocomposites. Reactive and Functional Polymers, 131(September), 400–413. https://doi.org/10.1016/j.reactfunctpolym.2018.08.018

Iulianelli, A., & Drioli, E. (2020). Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. In Fuel Processing Technology (Vol. 206, p. 106464). Elsevier B.V. https://doi.org/10.1016/j.fuproc.2020.106464

Kahouli, M., Barhoumi, A., Bouzid, A., Al-Hajry, A.,Guermazi, S. (2015). Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. In Superlattices and Microstructures (Vol. 85, p. 7–23). Academic Press. https://doi.org/10.1016/j.spmi.2015.05.007

Kausar. A .(2017) Phase inversion technique-based polyamide films and their applications: a comprehensive review. Polymer-Plastics Technology and Engineering, v. 56, p. 1421-1437. https://doi.org/10.1080/03602559.2016.1276593

Kazemi, F., Jafarzadeh, Y., Masoumi, S., & Rostamizadeh, M. (2021). Oil-in-water emulsion separation by PVC membranes embedded with GO-ZnO nanoparticles. Journal of Environmental Chemical Engineering, 9(1), 104992. https://doi.org/10.1016/j.jece.2020.104992

Khulbe, C. K., Feng, C.Y., Matsuura, T.( 2008) Synthetic polymeric membranes: characterization by atomic force microscopy. Berlin: Springer. ISBN: 978-3-540-73994-4

Leo, C. P., Cathie Lee, W. P., Ahmad, A. L., & Mohammad, A. W. (2012). Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Separation and Purification Technology, 89, 51–56. https://doi.org/10.1016/j.seppur.2012.01.002

Marana, N. L.; Sambrano, J. R.; Souza, A. R. (2010). Propriedades eletrônicas, estruturais e constantes elásticas do ZnO. Química Nova, v. 33, p. 810-815. https://doi.org/10.1590/S0100-40422010000400009

Matsuyama, H., Takida, Y., Maki, T., & Teramoto, M. (2002). Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation. Polymer, 43(19), 5243–5248. https://doi.org/10.1016/S0032-3861(02)00409-3

Mayrinck, C.; Raphael, E.; Ferrari, J. L.; Schiavon, M. A. (2014). Síntese, propriedades e aplicações de óxido de zinco nanoestruturado. Revista Virtual de Química. v. 6, p. 1185-1204. DOI:10.5935/1984-6835.20140078

Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. In Ceramics International (Vol. 43, Número 1, p. 907–914). Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2016.10.051

Mishra, Y. K., & Adelung, R. (2018). ZnO tetrapod materials for functional applications. In Materials Today (Vol. 21, Número 6, p. 631–651). Elsevier B.V. https://doi.org/10.1016/j.mattod.2017.11.003

Mulder, M. (1996) Basic Principles of Membrane Technology. Springer Netherlands. Second Edition. Kluwer Academic Publishers. IBSN:079234247X

Nasrollahi, N., Vatanpour, V., Aber, S., & Mahmoodi, N. M. (2018). Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Separation and Purification Technology, 192(June 2017), 369–382. https://doi.org/10.1016/j.seppur.2017.10.034

Nath, K. (2017). Membrane Separation Processes. Second Edition, Delhi: PHI Learning. ISBN: 978-81-2035291-9

Naz, M. Y., Ahmad, S., Shukrullah, S., Altaf, N. U. H., & Ghaffar, A. (2020). Effect of microwave plasma treatment on membrane structure of polysulfone fabricated using phase inversion method. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.04.522

Obreja, P., Cristea, D., Dinescu, A., & Romaniţan, C. (2019). Influence of surface substrates on the properties of ZnO nanowires synthesized by hydrothermal method. In Applied Surface Science (Vol. 463, p. 1117–1123). Elsevier B.V. https://doi.org/10.1016/j.apsusc.2018.08.191

Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchicov, M. A., Dogan, S., Avrutin, V., Cho, S. J., Morkoç, H. (2005). A Comprehensive review of ZnO materials and devices. Journal of Applied Physics, v. 98, p. 1-104. https://doi.org/10.1063/1.1992666

Pabby, A. K., Rizvi, S. S. H. & Sastre, A. M. (2015). Handbook of Membrane Separations, Boca Raton: CRC Press. IBSN: 13: 978-1-4665-5558-7

Pal, N., Agarwal, M., Maheshwari, K., & Solanki, Y. S. (2020). A review on types, fabrication and support material of hydrogen separation membrane. Materials Today: Proceedings, 28, 1386–1391. https://doi.org/10.1016/j.matpr.2020.04.806

Pan, Z., Song, C., Li, L., Wang, H., Pan, Y., Wang, C., Li, J., Wang, T., & Feng, X. (2019). Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects. Chemical Engineering Journal, 376, 120909. https://doi.org/10.1016/j.cej.2019.01.188

Park, H. G., & Khang, D. Y. (2016). Asymmetric porous membranes from binary polymer solution by physical gelation induced phase separation. Polymer, 87, 323–329. https://doi.org/10.1016/j.polymer.2016.02.016

Ponnamma, D., Cabibihan, J. J., Rajan, M., Pethaiah, S. S., Deshmukh, K., Gogoi, J. P., Pasha, S. K. K., Ahamed, M. B., Krishnegowda, J., Chandrashekar, B. N., Polu, A. R., & Cheng, C. (2019). Synthesis, optimization and applications of ZnO/polymer nanocomposites. Materials Science and Engineering C, 98(December 2018), 1210–1240. https://doi.org/10.1016/j.msec.2019.01.081

Rajakumaran, R., Boddu, V., Kumar, M., Shalaby, M. S., Abdallah, H., & Chetty, R. (2019a). Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination, 467(June), 245–256. https://doi.org/10.1016/j.desal.2019.06.018

Rajakumaran, R., Boddu, V., Kumar, M., Shalaby, M. S., Abdallah, H., & Chetty, R. (2019b). Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination, 467, 245–256. https://doi.org/10.1016/j.desal.2019.06.018

Rajakumaran, R., Kumar, M., & Chetty, R. (2020). Morphological effect of ZnO nanostructures on desalination performance and antibacterial activity of thin-film nanocomposite (TFN) membrane. Desalination, 495(April), 114673. https://doi.org/10.1016/j.desal.2020.114673

Shaban, M., AbdAllah, H., Said, L., Hamdy, H. S., & Abdel Khalek, A. (2015). Titanium dioxide nanotubes embedded mixed matrix PES membranes characterization and membrane performance. Chemical Engineering Research and Design, 95, 307–316. https://doi.org/10.1016/j.cherd.2014.11.008

Sridhar, S., Moulik, S. Tackling Challenging Industrial Separation Problems through Membrane Technology. In: Sridhar, S., Moulik, S. Membrane Processes Pervaporation, Vapor Permeation and Membrane Distillation for Industrial Scale Separations. Hoboken: John Wiley & Sons, 2019. ISBN: 978-1-119-41835-1

Takht Ravanchi, M., Kaghazchi, T., & Kargari, A. (2009). Application of membrane separation processes in petrochemical industry: a review. Desalination, 235(1–3), 199–244. https://doi.org/10.1016/j.desal.2007.10.042

Tawalbeh, M., Al Mojjly, A., Al-Othman, A., & Hilal, N. (2018). Membrane separation as a pre-treatment process for oily saline water. In Desalination (Vol. 447, p. 182–202). Elsevier B.V. https://doi.org/10.1016/j.desal.2018.07.029

Torres-Trueba, A., Ruiz-Treviño, F. A., Luna-Bárcenas, G., & Ortiz-Estrada, C. H. (2008). Formation of integrally skinned asymmetric polysulfone gas separation membranes by supercritical CO2. Journal of Membrane Science, 320(1–2), 431–435. https://doi.org/10.1016/j.memsci.2008.04.024

Uragami, T. Science and Technology of Separation Membranes. Chichester: John Wiley & Sons Ltd, 2017. ISBN:9781118932544

Wu, Y., Gao, M., Chen, W., Lü, Z., Yu, S., Liu, M., & Gao, C. (2020). Efficient removal of anionic dye by constructing thin-film composite membrane with high perm-selectivity and improved anti-dye-deposition property. Desalination, 476, 114228. https://doi.org/10.1016/j.desal.2019.114228

Yong, W. F., & Zhang, H. (2021). Recent advances in polymer blend membranes for gas separation and pervaporation. In Progress in Materials Science (Vol. 116, p. 100713). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2020.100713

Zang, Z., & Tang, X. (2015). Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method. Journal of Alloys and Compounds, 619, 98–101. https://doi.org/10.1016/j.jallcom.2014.09.072

Zhang, X., Wang, Y., Liu, Y., Xu, J., Han, Y., & Xu, X. (2014). Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Applied Surface Science, 316(1), 333–340. https://doi.org/10.1016/j.apsusc.2014.08.004

Zhu, L., Song, H., Wang, G., Zeng, Z., & Xue, Q. (2018). Symmetrical polysulfone/poly(acrylic acid) porous membranes with uniform wormlike morphology and pH responsibility: Preparation, characterization and application in water purification. Journal of Membrane Science, 549, 515–522. https://doi.org/10.1016/j.memsci.2017.12.052

Downloads

Publicado

16/07/2021

Como Citar

SOUZA, J. E. S. de .; ARAÚJO, B. A. .; SARMENTO , K. K. F. .; REBOUÇAS, L. D. .; MEDEIROS, K. M. de .; LIMA, C. A. P. de . Membranas de nanocompósitos poliméricos com óxido de zinco para o tratamento de efluentes: Revisão de literatura . Research, Society and Development, [S. l.], v. 10, n. 8, p. e46510817402, 2021. DOI: 10.33448/rsd-v10i8.17402. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17402. Acesso em: 23 nov. 2024.

Edição

Seção

Engenharias