Antibacterial activity of crude extract of Tabernaemontana catharinensis latex (A. DC) against Alicyclobacillus spp.

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.17907

Keywords:

Antibacterial activity; Tabernaemontana catharinensis (A. DC); Latex; Alicyclobacillus spp.; Orange juice.

Abstract

Alicyclobacillus spp. is composed of Gram-positive, aerobic, thermoacidophilic, endospore-forming bacteria that cause food and beverage spoilage. The presence of Alicyclobacillus spp. may result in the production of guaiacol, which leads to sensory changes in the odour and taste of citrus juices and acidic foods. Tabernaemontana catharinensis (A. DC) is a plant belonging to the family Apocynaceae that produces milky latex with several biological activities described as antioxidant, antiviral, antimicrobial, trypanocidal and anti-leishmanicidal. Therefore, this study aims to evaluate the antimicrobial activity of the crude latex of T. catharinensis (A. DC) against microorganisms of the genus Alicyclobacillus spp. The minimum inhibitory concentration of latex was 7.81 μg/ml for the five Alicyclobacillus species analysed. The minimum bactericidal concentration for the species Alicyclobacillus acidoterrestris 0244T, A. hesperidum 0298T, A. acidiphilus 0247T and A. cycloheptanicus 0297T was 250 μg/ml. Cytotoxicity analysis demonstrated that latex was toxic to Vero cells at concentrations greater than 84.67 μg/ml. Scanning electron microscopy revealed changes in the cell wall of A. acidoterrestris 0244T present in orange juice when treated with crude latex. The results obtained suggest that the crude latex of T. catharinensis (A. DC) displays an antimicrobial effect against Alicyclobacillus, with potential for application in the food industry.

Author Biographies

Márcia Maria dos Anjos Szczerepa , State University of Maringá

Doctor in Food Science, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil

Kathielle Luiza Mucellini , State University of Maringá

Graduated in Pharmacy, State University of Maringá. Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil

Érica Benassi Zanqueta , State University of Maringá

Doctor in Pharmaceutical Sciences, State University of Maringá. Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.

César Armando Contreras Lancheros , State University of Maringá

Doctor in Pharmaceutical Sciences, State University of Maringá. Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.

Tânia Ueda Nakamura , State University of Maringá

Pharmacy Department, State University of Maringá. Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.

Celso Vataru Nakamura , State University of Maringá

Pharmacy Department, State University of Maringá. Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.

Eliana Harue Endo , State University of Maringá

Doctor in Pharmaceutical Sciences, State University of Maringá. Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.

Miguel Machinski Junior , State University of Maringá

Basic Health Science Department, State University of Maringá. Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.

Jane Martha Graton Mikcha , State University of Maringá

Department of Clinical Analysis and Biomedicine, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.

Regina Aparecida Correia Gonçalves , State University of Maringá

Pharmacy Department, State University of Maringá. Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.

Arildo José Braz de Oliveira, State University of Maringá

Pharmacy Department, State University of Maringá. Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.

References

dos Anjos, M. M., da Silva, A. A., de Pascoli, I. C., Mikcha, J. M. G., Machinski, Jr., M., Peralta, R. M., & de Abreu Filho, B. A. (2016). Antibacterial activity of papain and bromelain on Alicyclobacillus spp. J. Food Microbiol. 216, 121–126. 10.1016/j.ijfoodmicro.2015.10.007.

Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2010). Combining eugenol and cinnamaldehyde to control the growth of Alicyclobacillus acidoterrestris. Food Control 21, 172–177. 10.1016/j.foodcont.2009.05.002.

Boligon, A. A., Piana, M., Kubiça, T. F., Mario, D. N., Dalmolin, T. V., Bonez, P. C., Weiblen, R., Lovato, L., Alves, S. H., Campos, M. M. A., & Athayde, M. L. (2015). HPLC analysis and antimicrobial, antimycobacterial and antiviral activities of Tabernaemontana catharinensis A. DC. J. Appl. Biomed. 13, 7–18. 10.1016/j.jab.2014.01.004.

Cai, R., Yuan, Y., Wang, Z., Guo, C., Liu, B., & Yue, T. (2015). Reduction of Alicyclobacillus acidoterrestris spores on apples by chlorine dioxide in combination with ultrasound or shaker. Food Bioprocess Technol. 8, 2409–2417. 10.1007/s11947-015-1594-9.

Chang, S., & Kang, D.-H, (2005). Development of novel Alicyclobacillus spp. isolation medium. J. Appl. Microbiol. 99, 1051–1060. 10.1111/j.1365-2672.2005.02716.x.

CLSI. Clinical and Laboratory Standards Institute, (2018). CLSI Document M07-A11—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard, eleventh ed. CLSI, Wayne, PA.

Cowan, M. M. (1999). Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564–582. 10.1128/CMR.12.4.564.

Deinhard, G., Blanz, P., Poralla, K., & Altan, E. (1987). Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst. Appl. Microbiol.10, 47–53. 10.1016/S0723-2020(87)80009-7.

Dussourd, D. E. (2017). Behavioral sabotage of plant defenses by insect folivores. Annu. Rev. Entomol. 62, 15–34. 10.1146/annurev-ento-031616-035030.

Gindri, A. L., Boligon, A. A., Mario, D. N., Frohlich, J. K., de Brum, T. F., Alves, S. H., & Athayde, M. L. (2011). Potencial antimicrobiano do extrato bruto e frações das folhas de Tabernaemontana catharinensis A. DC. Rev. Contexto Saúde 10, 1213–1216. 10.21527/2176-7114.2011.20.1213-1216.

Gomes, R. C., Neto, A. C., Melo, V. L., Fernandes, V. C., Dagrava, G., Santos, W. S., Pereira, P. S., Couto, L. B., & Beleboni, R. O. (2009). Antinociceptive and anti-inflammatory activities of Tabernaemontana catharinensis. Pharm. Biol. 47, 372–376. 10.1080/13880200902753239.

Haddad, A., Sessos, A., Attias, M., Farina, M., Nazareth, M. M., Silveira, M., Benchimol, M., Soares, M. J., Barth, M. O., Machado, D. R., Souto-Patrón, T., & Souza, W. (2007). Técnicas de Microscopia Eletrônica aplicada as Ciências Biológicas, third ed. Sociedade Brasileira de Microscopia, Rio de Janeiro, Brazil.

Holetz, F. B., Pessini, G. L., Sanches, N. R., Cortez, D. A. G., Nakamura, C. V., & Dias Filho, B. P. (2002). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 97, 1027–1031. 10.1590/S0074-02762002000700017.

Janning, D., Albuquerque, C. A. C., & Barauna, S. C. (2011). Avaliação preliminar do extrato hidroalcoólico de Tabernaemontana catharinensis no processo de cicatrização de feridas em pele de ratos (Rattus norvegicus). Rev. Eletrônica Farmácia 8, 53–64. 10.5216/ref.v8i3.15803.

Lewinsohn, T. M., (1991). The geographical distribution of plant latex. Chemoecology 2, 64–68. 10.1007/BF01240668.

Makhafola, T. J., McGaw, L. J., & Eloff, J. N. (2014). In vitro cytotoxicity and genotoxicity of five Ochna species (Ochnaceae) with excellent antibacterial activity. S. Afr. J. Bot. 91, 9–13. 10.1016/j.sajb.2013.11.010.

Matsubara, H., Goto, K., Matsumura, T., Mochida, K., Iwaki, M., Niwa, M., & Yamasato, K. (2002). Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, -alicyclic fatty acid-containing bacterium isolated from acidic beverages. J. Syst. Evol. Microbiol. 52, 1681–1685. 10.1099/00207713-52-5-1681.

Molva, C., & Baysal, A. H. (2015). Evaluation of bioactivity of pomegranate fruit extract against Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. LWT - Food Sci. Technol. 62, 989–995. 10.1016/j.lwt.2015.02.021.

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63. 10.1016/0022-1759(83)90303-4.

Mousinho, K. C., de C, Oliveira, C., de O. Ferreira, J. R., Carvalho, A. A., Magalhães, H. I. F., Bezerra, D. P., Alves, A. P. N. N., Costa-Lotufo, L. V., Pessoa, C., de Matos, M. P. V., Ramos, M. V., & Moraes, M. O, (2011). Antitumor effect of laticifer proteins of Himatanthus drasticus (Mart.) Plumel – Apocynaceae. J. Ethnopharmacol. 137, 421–426. 10.1016/j.jep.2011.04.073.

Neves, M., & Trombin, V. (n.d.). Anuário da Citricultura 2017. Brazilian Association of Citrus Exporters. Retrieved February 22, 2018, from http://www.citrusbr.com/download/biblioteca/CitrusBR_Anuario_2017_alta.pdf

de Oliveira, J. G., & de Abreu Filho, B. A. (2012). Propriedade antimicrobiana do eugenol frente às amostras de Alicyclobacillus spp. isoladas de suco de laranja. Rev. Inst. Adolfo Lutz 71, 410–414.

de Pascoli, I. C., dos Anjos, M. M., da Silva, A. A., Lorenzetti, F. B., Cortez, D. A. G., Mikcha, J. M. G., Nakamura, T. U., Nakamura, C. V., & de Abreu Filho, B. A. (2018). Piperaceae extracts for controlling Alicyclobacillus acidoterrestris growth in commercial orange juice. Ind. Crops Prod. 116, 224–230. 10.1016/j.indcrop.2018.02.073.

Pei, J., Yue, T., Yuan. Y., & Dai, L. (2017). Activity of paracin C from lactic acid bacteria against Alicyclobacillus in apple juice: Application of a novelty bacteriocin. J. Food Saf. 37, e12350. 10.1111/jfs.12350.

Piskernik, S., Klančnik, A., Demšar, L., Možina, S. S., & Jeršek, B. (2016). Control of Alicyclobacillus spp. vegetative cells and spores in apple juice with rosemary extracts. Food Control 60, 205–214. 10.1016/j.foodcont.2015.07.018.

Ruiz, S. P., dos Anjos, M. M., Carrara, V. S., deLima, J. N., Cortez, D. A. G., Nakamura, T. U., Nakamura, C. V., & de Abreu Filho, B. A. (2013). Evaluation of the antibacterial activity of Piperaceae extracts and nisin on Alicyclobacillus acidoterrestris. J. Food Sci. 78, M1772–M1777. 10.1111/1750-3841.12283.

Santos, A. O., Ueda-Nakamura, T., Dias Filho, B. P., Veiga Junior, V. F., Pinto, A. C., Nakamura, C. V. (2008). Effect of Brazilian copaiba oils on Leishmania amazonensis. J. Ethnopharmacol. 120, 204–208. 10.1016/j.jep.2008.08.007.

da Silva Brum, E., da Rosa Moreira, L., da Silva, A. R. H., Boligon, A. A., Carvalho, F. B., Athayde, M. L., Brandão, R., & Oliveira, S. M. (2016). Tabernaemontana catharinensis ethyl acetate fraction presents antinociceptive activity without causing toxicological effects in mice. J. Ethnopharmacol. 191, 115–124. 10.1016/j.jep.2016.06.036.

da Silva Menecucci, C., Mucellini, K. L., de Oliveira, M. M., Higashi, B., de Almeida, R. T. R., Porto, C., Pilau, E. J., Gonçalves, J. E., Gonçalves, R. A. C., & de Oliveira, A. J. B. (2019). Latex from Tabernaemontana catharinensis (A. DC) - Apocynaceae: An alternative for the sustainable production of biologically active compounds. Ind. Crops Prod. 129, 74–84. 10.1016/j.indcrop.2018.11.036.

Soares, D. C., Pereira, C. G., Meireles, M. A. A., & Saraiva, E. M. (2007). Leishmanicidal activity of a supercritical fluid fraction obtained from Tabernaemontana catharinensis. Parasitol. Int. 56, 135–139. 10.1016/j.parint.2007.01.004.

Yamazaki, K., Teduka, H., & Shinano, H. (1996). Isolation and identification of Alicyclobacillus acidoterrestris from acidic beverages. Biosci. Biotechnol. Biochem. 60, 543–545. 10.1271/bbb.60.543.

Downloads

Published

23/07/2021

How to Cite

RICHARD, F. .; SZCZEREPA , M. M. dos A.; MUCELLINI , K. L.; ZANQUETA , Érica B. .; LANCHEROS , C. A. C. .; NAKAMURA , T. U. .; NAKAMURA , C. V. .; ENDO , E. H. .; MACHINSKI JUNIOR , M.; GRATON MIKCHA , J. M.; GONÇALVES , R. A. C. .; OLIVEIRA, A. J. B. de .; ABREU FILHO, B. A. de. Antibacterial activity of crude extract of Tabernaemontana catharinensis latex (A. DC) against Alicyclobacillus spp. Research, Society and Development, [S. l.], v. 10, n. 9, p. e16310917907, 2021. DOI: 10.33448/rsd-v10i9.17907. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17907. Acesso em: 21 sep. 2021.

Issue

Section

Agrarian and Biological Sciences