The biomechanical behavior of single crown implant-supported prosthesis with different types of connections and occlusal loads: Photoelastic and strain gauge analysis

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.18035

Keywords:

Dental Implants; Prostheses and Implants; Dental implant-abutment design.

Abstract

The aim of the study was to evaluate the biomechanical behavior, through photoelastic (PA) and strain gauge analysis (SA), of single crown implant-supported prosthesis with different implant connections (external hexagon (EH), Morse taper (MT), internal Morse hexagon (IMH), Morse taper hexagon (MTH), and frictional Morse taper (FMT)) and different occlusal loads (axial and oblique (45°)). The data were submitted to ANOVA and Tukey's test (α = 0,05). By photoelasticity, regarding axial load, EH produced more high-intensity fringes (2.784 kPa) than the other connections. For the oblique load, all connections generated the same high-intensity fringes (3.480 kPa), except by MT group, that produced the same amount as axial load (2.088 kPa). For the strain gauge analysis, for the axial load, EH showed the highest microstrains value (158,76) and lowets for MT (59,88). For all other groups, oblique load produced higher microstrains values than axial load. For the oblique load, MT showed the lowest microstrains value (88.79), followed by FMT (391,43), EH (468,47) and IMH (507,65). MTH presented the highest value (621,25) compared to all groups (P <0.05). When comparing both loads of the same connection system, only MT showed similar values (P <0.05). It was possible to conclude that the different connection systems tested directly influenced the stress distribution at both loads. The implants with internal connection present less stress distribution when submitted to axial load than the EH group. However, when the oblique load was applied, all connections presented higher values of stress distribution, except for the MT group.

References

Andrade, C. L., Carvalho, M. A., Cury, A. A. D. B., & Sotto-Maior, B. S. (2016). Biomechanical Effect of Prosthetic Connection and Implant Body Shape in Low-Quality Bone of Maxillary Posterior Single Implant-Supported Restorations. The International journal of oral & maxillofacial implants, 31(4), 92-7.

Assuncao, W. G., Barao, V. A. R., Tabata, L. F., Gomes, E. A., Delben, J. A., & dos Santos, P. H. (2009). Biomechanics studies in dentistry: bioengineering applied in oral implantology. J Craniofac Surg, 20, 1173-7.

Astrand, P., Engquist, B., Dahlgren, S., Grondahl, K., Engquist, E., & Feldmann, H. (2004) Astra Tech and Branemark system implants: a 5-year prospective study of marginal bone reactions. Clin Oral Implants Res, 15, 413-20.

Atieh, M. A., Ibrahim, H. M., & Atieh, A. H. (2010). Platform switching for marginal bone preservation around dental implants: a systematic review and meta-analysis. J Periodontol, 81, 1350-66.

Aunmeungtong, W., khongkhunthian, P., & Rungsiyakull, P. (2016). Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study. ORAL & implantology, 9(4), 202-212.

Binon, P. P. (2000). Implants and components: entering the new millennium. Int J Oral Maxillofac Implants, (15), 76-94.

Branemark, P. I., Zarb, G., Albrektsson T. & Rosen, H. (1986). Tissue-Integrated Prostheses. Osseointegration in Clinical Dentistry. Quintessence Publishing Co. Plastic and Reconstructive Surgery, 77(3), 496-497.

Campaner, M., Borges, A. C. M., Camargo, D. A., Mazza, L. C., Bitencourt, S. B., Medeiros, R. A., Goiato, M. C., & Pesqueira, A. A. (2019). Journal of Clinical & Diagnostic Research, 13(5), 04-09.

Cehreli, M. C., Akca, K., Iplikcioglu, H., & Sahin, S. (2004). Dynamic fatigue resistance of implant-abutment junction in an internally notched morse-taper oral implant: influence of abutment design. Clin Oral Implants Res, 15, 459-65.

Cooper, L. F., Tarnow, D., Froum, S., Moriarty, J., & De Kok, I. J. (2016). Comparison of Marginal Bone Changes with Internal Conus and External Hexagon Design Implant Systems: A Prospective, Randomized Study. Int J Periodontics Restorative Dent, 36, 631-42.

Finger, I. M., Castellon, P., Block, M., & Elian, N. (2003). The evolution of external and internal implant/abutment connections. Pract Proced Aesthet Dent, 15, 625-32.

Goellner, M., Schmitt, J., Karl, M., Wichmann, M., & Holst, S. (2011). The effect of axial and oblique loading on the micromovement of dental implants. International Journal of Oral & Maxillofacial Implants, 26(2), 257-64.

Goellner, M., Schmitt, J., Karl, M., Wichmann, M., & Holst, S. (2011). The effect of axial and oblique loading on the micromovement of dental implants. International Journal of Oral & Maxillofacial Implants, 26(2), 257-64.

Goiato, M. C., Pesqueira, A. A., Falcon-Antenucci, R. M., Dos Santos, D. M., Haddad, M. F., Bannwart, L. C., & Moreno A. (2013). Stress distribution in implant-supported prosthesis with external and internal implant-abutment connections. Acta Odontol Scand, 71, 283-8.

Goiato, M. C., Tonella, B. P., Ribeiro, P. P., Ferrac, R., & Peliizzer, E. P. (2009). Methods used for assessing stresses in bucomaxillary prostheses: photoelasticity, finite elemento technique and extensometry. J Craniofac Surg, 20, 561-4.

Gracis, S., Michalakis, K., Vigolo, P., Vult von Steyern, P., Zwahlen, M., & Sailer, I. (2012). Internal vs. external connections for abutments/reconstructions: a systematic review. Clin Oral Implants Res, 23, 202-16.

Koke U, Wolf A, Lenz P, & Gilde H. (2004). In vitro investigation of marginal accuracy of implant-supported screw-retained partial dentures. J Oral Rehabil, 31, 477-82.

Lemos, C. A. A., Verri, F. R., Bonfante, E. A., Santiago Junior, J. F., & Pellizzer, E. P. (2017). Comparison of external and internal implant-abutment connections for implant supported prostheses. A systematic review and meta-analysis. J Dent, 70, 14-22.

Maeda, Y., Satoh, T., & Sogo, M. (2006). In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil, 33, 75-8.

Nentwig, G. H. (2004). Ankylos implant system: concept and clinical application. J Oral Implantol, 30, 171-7.

Nishioka, R. S., de Vasconcellos, L. G. O., & Nishioka, G. N. M. (2011). Comparative strain gauge analysis of external and internal hexagon, Morse taper, and influence of straight and offset implant configuration. Implant Dent, 20, 24-32.

Ozcelik, T., & Ersoy, A. E. (2007). An investigation of tooth/implant-supported fixed prosthesis designs with two different stress analysis methods: an in vitro study. J Prosthodont, 16, 107-16.

Palmer R. M., Palmer P. J., & Smith, B. J. (1997). A prospective study of Astra single tooth implants. Clinical Oral Implants Research, 8(3), 173-179.

Pesqueira, A. A., Goiato, M. C., Gennarri-Filho, H., Monteiro, D. R., dos Santos, D. M., Haddad, M. F., & Pellizzer, E. P. (2014). Use of stress analysis methods to evaluate the biomechanics of oral rehabilitation with implants. Journal of Oral Implantology, 40(2), 217-228.

Pessoa, R. S., Muraru, L., Júnior, E. M., Vaz, L. G., Sloten, J. V. , Duyck, J., & Jaecques S. V. N. (2010). Influence of implant connection type on the biomechanical environment of immediately placed implants–CT‐based nonlinear, three‐dimensional finite element analysis, 12(3), 219-34.

Pessoa, R. S., Sousa, R. M., Pereira, L. M., Neves, F. D., Bezerra, F. J. B., Jaecques, S. V. N., loten, J. V., Quirynen, M., Teughels, W., & Spin-Neto R. (2017). Bone remodeling around implants with external hexagon and morse‐taper connections: a randomized, controlled, split‐mouth, clinical trial. Clinical implant dentistry and related research, 19(1), 97-110.

Schmitt, C. M., Nogueira-Filho, G., Tenenbaum, H. C., Lai, J. Y., Brito, C., Doring, H., & Nonhoff, J. (2014). Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res, 102, 552-74.

Yamaguchi, S., Yamanishi, Y., Machado, L. S., Matsumoto, S., Tovar, N., Coelho, P. G., Thompson, V. P., & Imazato, S. (2017). In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models. J Prosthodont Res, 62(1), 24-30.

Zaparolli, D., Peixoto, R. F., Pupim, D., Macedo, A. P., Toniollo, M. B., & Mattos, M. G. C. (2017). Photoelastic analysis of mandibular full-arch implant-supported fixed dentures made with different bar materials and manufacturing techniques. Mater Sci Eng C Mater Biol Appl, 81, 144-7.

Downloads

Published

25/07/2021

How to Cite

JORGE, C. de F. .; MAZZA, L. C. .; CAMPANER, M.; ZAHOUI, A.; SILVA, L. S. .; CRUZ, K. H. .; PESQUEIRA, A. A. . The biomechanical behavior of single crown implant-supported prosthesis with different types of connections and occlusal loads: Photoelastic and strain gauge analysis. Research, Society and Development, [S. l.], v. 10, n. 9, p. e26110918035, 2021. DOI: 10.33448/rsd-v10i9.18035. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18035. Acesso em: 20 sep. 2021.

Issue

Section

Health Sciences