Robotics and inclusion of students with disabilities in special education




Robotics; Special education; Inclusion; Disabilities; Educational robotics.


The concept of inclusion and inclusive education for children and adolescents with disabilities has been a topic of research for many countries over the last decades. Among the different methods and practices that have been implemented for interventions, the use of novel technologies and especially educational robotics has been proven to be a valuable tool. In this study, the authors attempted to define and examine those skills that are acquired through robotic interventions, and also the way they are associated with successful inclusion. The areas of social, cognitive, and functional skills of children and adolescents with disabilities were examined and their enhancement through robotics was assessed. For the purposes of this review, the authors searched Research Gate, Google Scholar, Scopus, PubMed, and Science Direct and identified relevant research papers. After the application of eligibility criteria, 12 research papers were considered suitable for analysis. The analysis of results indicates that most children and adolescents with disabilities that participated in interventions with robots managed to develop their social, cognitive, and functional skills and in some cases, their inclusion in educational settings was facilitated. The findings of this review support the need for implementation of these newly introduced practices and also some implications are discussed. 

Author Biography

Eleni Gkiolnta, University of Macedonia

Department of Educational and Social Policy


Albo-Canals, J., Martelo, A. B., Relkin, E., Hannon, D., Heerink, M., Heinemann, M., Leidl, K., & Bers, M. U. (2018). A Pilot Study of the KIBO Robot in Children with Severe ASD. International Journal of Social Robotics, 10(3), 371–383.

Alston, R. J., & Hampton, J. L. (2000). Science and engineering as viable career choices for students with disabilities: A survey of parents and teachers. Rehabilitation Counseling Bulletin, 43, 158-164.

*Bargagna, S., Castro, E., Cecchi, F., Cioni, G., Dario, P., Dell’Omo, M., Di Lieto, M. C., Inguaggiato, E., Martinelli, A., Pecini, C., & Sgandurra, G. (2019). Educational Robotics in Down Syndrome: A Feasibility Study. Technology, Knowledge and Learning, 24(2), 315–323.

Barrow, L., Markman, L., & Rouse, C. E. (2009). Technology's edge: The educational benefits of computer-aided instruction. American Economic Journal: Economic Policy, 1(1), 52-74.

* Bonarini, A., Clasadonte, F., Garzotto, F., Gelsomini, M., & Romero, M. (2016, December). Playful interaction with Teo, a mobile robot for children with neurodevelopmental disorders. In Proceedings of the 7th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion (pp. 223-231).

* Culén, A. L., Børsting, J., & Odom, W. (2019, June). Mediating relatedness for adolescents with ME: Reducing isolation through minimal interactions with a Robot Avatar. In Proceedings of the 2019 on Designing Interactive Systems Conference (pp. 359-371).

Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.

*Disseler, S., & Mirand, G. (2017). Students with Disabilities and LEGO© Education. Journal of Education and Human Development, 6(3), 38–52.

*Encarnação, P., Leite, T., Nunes, C., Nunes da Ponte, M., Adams, K., Cook, A., Caiado, A., Pereira, J., Piedade, G., & Ribeiro, M. (2017). Using assistive robots to promote inclusive education. Disability and Rehabilitation: Assistive Technology, 12(4), 352–372.

Francisco, M. P. B., Hartman, M., & Wang, Y. (2020). Inclusion and Special Education. Education Sciences, 10(9), 238.

Johnson, D. W., & Johnson, R. T. (1994). Learning together and alone. Cooperative, competitive, and individualistic learning. Allyn and Bacon.

Jung, S. E., Lee, K., Cherniak, S., & Cho, E. (2020). Non-sequential Learning in a Robotics Class: Insights from the Engagement of a Child with Autism Spectrum Disorder. Technology, Knowledge and Learning, 25(1), 63–81.

Khaksar, S. M. S., Slade, B., Wallace, J., & Gurinder, K. (2020). Critical success factors for application of social robots in special developmental schools: Development, adoption and implementation. International Journal of Educational Management, 34(4), 677–696.

Khan, K. S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five steps to conducting a systematic review. Journal of the Royal Society of Medicine, 96, 118–121.

Lee, H., & Hyun, E. (2015). The intelligent robot contents for children with speech-language disorder. Educational Technology and Society, 18(3), 100–113.

Leroux, P. (1999). Educational Robotics. International Journal of Artificial Intelligence in Education, 10, 1080-1089.

Lindsay, S. (2020). Exploring Skills Gained Through a Robotics Program for Youth With Disabilities. OTJR Occupation, Participation and Health, 40(1), 57–63.

Lindsay, S., & Hounsell, K. G. (2017). Adapting a robotics program to enhance participation and interest in STEM among children with disabilities: a pilot study. Disability and Rehabilitation: Assistive Technology, 12(7), 694–704.

Pihlainen, K., Suero Montero, C., & Kärnä, E. (2017). Fostering parental co-development of technology for children with special needs informal learning activities. International Journal of Child-Computer Interaction, 11, 19–27.

Rodriguez, C. C., & Garro-Gil, N. (2015). Inclusion and integration on special education. Procedia-Social and Behavioral Sciences, 191, 1323-1327.

Shamsuddin, S., Yussof, H., Hanapiah, F. A., Mohamed, S., Jamil, N. F. F., & Yunus, F. W. (2015, August). Robot-assisted learning for communication-care in autism intervention. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 822-827).

Van Den Heuvel, R. J. F., Lexis, M. A. S., & De Witte, L. P. (2017a). Can the IROMEC robot support play in children with severe physical disabilities? A pilot study. International Journal of Rehabilitation Research, 40(1), 53–59.

Van Den Heuvel, R. J. F., Lexis, M. A. S., & De Witte, L. P. (2017b). Robot ZORA in rehabilitation and special education for children with severe physical disabilities: A pilot study. International Journal of Rehabilitation Research, 40(4), 353–359.

Van den Heuvel, R. J. F., Lexis, M. A. S., & de Witte, L. P. (2020). ZORA Robot Based Interventions to Achieve Therapeutic and Educational Goals in Children with Severe Physical Disabilities. International Journal of Social Robotics, 12(2), 493–504.




How to Cite

SYRIOPOULOU-DELLI, C.; GKIOLNTA, E. Robotics and inclusion of students with disabilities in special education. Research, Society and Development, [S. l.], v. 10, n. 9, p. e36210918238, 2021. DOI: 10.33448/rsd-v10i9.18238. Disponível em: Acesso em: 25 sep. 2021.



Education Sciences