Biodegradable films and vegetable reinforcement agents: A focus on Brazilian studies from the perspective of the circular economy

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.18278

Keywords:

Agro-industrial waste; Biovalorization; Biodegradable films; Active packaging; Circular economy; Sustainability.

Abstract

Anthropocene is the current geological age in which profound environmental changes on the planet occur under the influence of human activities. Among other aspects, some that corroborate this scenario are the food production system, including the impact of food losses and the generation of agro-industrial residues, as well as the consumption and disposal of plastics on a large scale, with particular attention to materials with a short life cycle, such as food packaging. As a result, there is a growing demand for packaging from renewable sources that are biodegradable and contribute to adding value and minimizing food loss, increasing its shelf life and functional value. An alternative that has been explored to improve the mechanical, thermal, and barrier properties of films is the use of nanoparticles which, due to the nanometric scale, provide the films with improved characteristics, such as higher tensile strength and Young's modulus and lower vapor permeability of water when compared to biodegradable films without nanoreinforcement. Nanoparticles can also be produced from agro-industrial residues, such as banana, cassava, corn peels, grape pomace, mango seeds and, cashew residues. Thus, this review aims to contribute to knowledge about the valorization of vegetables and their residues through the development of more sustainable films and food packaging, with a greater focus on studies produced by Brazilian institutions using national raw materials.

Author Biography

Ana Elizabeth Cavalcante Fai, Universidade Federal do Estado do Rio de Janeiro; Universidade do Estado do Rio de Janeiro

Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro.

References

Acquavia, M. A., Pascale, R., Martelli, G., Bondoni, M., & Bianco, G. (2021). Natural polymeric materials: a solution to plastic pollution from the agro-food sector. Polymers, 13(158). https://doi.org/10.3390/polym13010158

Almasi, H., Oskouie, M. J., & Saleh, A. (2020). A review on techniques used for design of controlled release food active packaging. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2020.1783199

Andrade, C. J. A., Simiqueli, A. P. R., Lima, F. A., Silva, J. B., Andrade, L. M., & Fai, A. E. C. (2017). Cassava wastewater as substrate in biotechnological processes. Handbook on cassava. Production, potential uses and recent advances (pp. 171–199). Nova Science Publishers.

Andrade, M. R., Nery, T. B. R., Santana, T. I. S., Leal, I. L., Rodrigues, L. A. P., Reis, J. H. O., Druzian, J. I., & Machado, B. A. S. (2019). Effect of cellulose nanocrystals from different lignocellulosic residues to chitosan/glycerol films. Polymers, 11(4), 658. https://doi.org/10.3390/polym11040658

Andretta, R., Luchese, C. L., Tessaro, I. C., & Spada, J. C. (2019). Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids, 93, 317-324. https://doi.org/10.1016/j.foodhyd.2019.02.019

Arquelau, P. B. F., Silva, V. D. M., Garcia, M. A. V. T., Araújo, R. L. B., & Fante, C. A. (2019). Characterization of edible coatings based on ripe “Prata” banana peel flour. Food Hydrocolloids, 89, 570-578. https://doi.org/10.1016/j.foodhyd.2018.11.029

Arun, K. B., Madhavan, A., Sindhu, R., Binod, P., Pandey, A., & Sirohi, R. R. R. (2020). Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Industrial Crops and Products, 154, 112621. https://doi.org/10.1016/j.indcrop.2020.112621

Assis, R. Q., Pagno, C. H., Costa, T. M. H., Flôres, S. H., Rios, A. O. (2018). Synthesis of biodegradable films based on cassava starch containing free and nanoencapsulated β-carotene. Packaging Technology and Science. https://doi.org/10.1002/pts.2364

Ates, B., Koytepe, S., Ulu, A., Gurses, C., & Thakur, V. K. (2020). Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.9b00553

Avila, L. B., Barreto, E. R. C., Souza, P. K., Silva, B. Z., Martiny, T. R., Moraes, C. C., Morais, M. M., Raghavan, V., & Rosa, G. S. (2020). Carrageenan-based films incorporated with jaboticaba peel extract: an innovative material for active food packaging. Molecules, 25, 5563. https://doi.org/10.3390/molecules25235563

Azeredo, H. M., Rosa, M. F., & Mattoso, L. H. C. (2017). Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 97, 664-671. https://doi.org/10.1016/j.indcrop.2016.03.013

Azevedo, L. C., Rovani, S., Santos, J. J., Dias, D. B., Nascimento, S. S., Oliveira, F. F., Silva, L., & Fungaro, D. A. (2020). Biodegradable films derived from corn and potato starch and study effect of silicate extracted from sugarcane waste ash. ACS Applied Polymer Materials, 2(6), 2160-2169. https://doi.org/10.1021/acsapm.0c00124

Bagde, P., Vigneshwaran, N. (2019). Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydrate Polymers, 222, 115021. https://doi.org/10.1016/j.carbpol.2019.115021

Balakrishnan, P., Sreekala, M. S., Kunaver, M., Huskić, M., & Thomas, S. (2017). Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydrate Polymers, 169, 176-188. https://doi.org/10.1016/j.carbpol.2017.04.017

Banerjee, J., Singh, R., Vijayaraghavan, R., Macfarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chemistry, 225, 10-22. https://doi.org/10.1016/j.foodchem.2016.12.093

Barone, A. S., Matheus, J. R. V., Souza, T. S. P., Moreira, R. F. A., & Fai, A. E. C. (2021). Green-based active packaging: opportunities beyond COVID-19, food applications and perspectives in circular economy - a brief review. Comprehensive Reviews in Food Science and Food Safety, 2021, 1–25. https://doi.org/10.1111/1541-4337.12812

Barros-Alexandrino, T. T., Tosi, M. M., & Assis, O. B. G. (2018). Comparison between chitosan nanoparticles and cellulose nanofibers as reinforcement

fillers in papaya puree films: effects on mechanical, water vapor barrier, and thermal properties. Polymer Engineering & Science, 59(S1), E287–E292. https://doi.org/10.1002/pen.24938

Bhardwaj, A., Alam, T., & Talwar, N. (2019). Recent advances in active packaging of agri-food products: a review. Journal of Postharvest Technology, 7(1), 33-62.

Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: a review. Trends in Food Science and Technology, 105, 385–401. https://doi.org/10.1016/j.tifs.2020.09.015

Brito, T. B. N., Ferreira, M. S. L, & Fai, A. E. C. (2020). Utilization of agricultural by-products: bioactive properties and technological applications. Food Reviews International. https://doi.org/10.1080/87559129.2020.1804930

Brito, T. B., Carrajola, J. F., Gonçalves, E. C. B. A., Martelli-Tosi, M., & Ferreira, M. S. L. (2019). Fruit and vegetable residues flours with different granulometry range as raw material for pectin-enriched biodegradable film preparation. Food Research International, 121, 412–421. https://doi.org/10.1016/j.foodres.2019.03.058

Buckle K. (2015). Can food science reduce world hunger? Food security and food safety for the twenty-first century. Springer. https://doi.org/10.1007/978-981-287-417-7_1

Caetano, K. S., Lopes, N. A., Costa, T. M. H., Brandelli, A., Rodrigues, E., Flôres, S. H., & Cladera-Oliveira, F. (2018). Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, 16, 138-147. https://doi.org/10.1016/j.fpsl.2018.03.006

Capello, C., Trevisol, T. C., Pelicioli, J., Terrazas, M. B., Monteiro, A. R., & Valencia, G. A. (2021). Preparation and characterization of colorimetric indicator films based on chitosan/polyvinyl alcohol and anthocyanins from agri-food wastes. Journal of Polymers and the Environment, 29, 1616–1629. https://doi.org/10.1007/s10924-020-01978-3

Carpes, S. T., Bertotto, C., Bilck, A. P., Yamashita, F., Anjos, O., Siddique, M. A. B., Harrison, S. M., & Brunton, N. P. (2021). Bio-based films prepared with apple pomace: Volatiles compound composition and mechanical, antioxidant and antibacterial properties. LWT – Food Science and Technology, 144, 111241. https://doi.org/10.1016/j.lwt.2021.111241

Carvalho, G. R., Marques, G. S., Jorge, L. M. M., Jorge, R. M. M. (2018). Cassava bagasse as a reinforcement agent in the polymeric blend of biodegradable films. Journal of Applied Polymer Science, 136(12), 47224. https://doi.org/10.1002/app.47224

Chan, J. X., Wong, J. F., Hassan, A., & Zakaria, Z. (2021). Bioplastics from agricultural waste. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications. Woodhead Publishing Series in Composites Science and Engineering, (pp. 141-169). https://doi.org/10.1016/B978-0-12-819953-4.00005-7

Chen, J., Wang, X., Long, Z., Wang, S., Zhang, J., Wang, L. (2020). Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. International Journal of Biological Macromolecules, 165, 2295–2302. https://doi.org/10.1016/j.ijbiomac.2020.10.117

Chisenga, S. M., Tolesa, G. N., Workneh, T. S., & Owusu-Kwarteng, James. (2020). Biodegradable food packaging materials and prospects of the fourth industrial revolution for tomato fruit and product handling. International Journal of Food Science, 8879101. https://doi.org/10.1155/2020/8879101

Chisenga, S. M., Workneh, T. S., Bultosa, G., & Alimi, B. A. (2019). Progress in research and applications of cassava flour and starch: a review. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-019-03814-6

Chong, T. Y., Law, M. C., & Chan, Y. S. (2020). The potentials of corn waste lignocellulosic fibre as an improved reinforced bioplastic composites. Journal of Polymers and the Environment, 29, 363-381. https://doi.org/10.1007/s10924-020-01888-4

Coelho, C. C. S., Michelin, M., Cerqueira, M. A., Gonçalves, C., Tonon, R. V., Pastrana, L. M., Freitas-Silva, O., Vicente, A. A., Cabral, L. M. C., & Teixeira, J. A. (2018). Cellulose nanocrystals from grape pomace: production, properties and cytotoxicity assessment. Carbohydrate Polymers, 192, 327-336. https://doi.org/10.1016/j.carbpol.2018.03.023

Coelho, C. C. S., Silva, R. B. S., Carvalho, C. W. P., et al. (2020). Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2020.05.046

Corrado, S., Ardente, F., Sala, S., & Saouter, E. (2017). Modelling of food loss within life cycle assessment: From current practice towards a systematization. Journal of Cleaner Production, 140, 847–859. https://doi.org/10.1016/j.jclepro.2016.06.050

Costa, J. C. M., Miki, K. S. L., Ramos, A. S., & Teixeira-Costa, B. E. (2020). Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon, 6(4), e03718. https://doi.org/10.1016/j.heliyon.2020.e03718

Costa, L. A., Diógenes, I. C. N., Oliveira, M. A., Ribeiro, A. F., Furtado, R. F., Bastos, M. S. R., Silva, M. A. S., & Benevides, S. D. (2021). Smart film of jackfruit seed starch as a potential indicator of fish freshness. Food Science and Technology, 41(2). https://doi.org/10.1590/fst.06420

Crizel, T. M., Haas Costa, T. M., De Oliveira, A. R., & Flôres, S. H. (2016). Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Industrial Crops and Products, 87, 218-228. http://dx.doi.org/10.1016/j.indcrop.2016.04.039

Crizel, T. M., Rios, A. D. O., Alves, V. D., Bandarra, N., Moldão-Martins, M., & Flôres, S. H. (2018). Biodegradable films based on gelatin and papaya peel microparticles with antioxidant properties. Food and Bioprocess Technology, 11, 536-550. https://doi.org/10.1007/s11947-017-2030-0

Da Silva, D. C., Lopes, I. A., Da Silva, L. J. S., Lima, M. F., Barros Filho, A. K. D., Villa-Vélez, H. A., & Santana, A. A. (2019). Physical properties of films based on pectin and babassu coconut mesocarp. International Journal of Biological Macromolecules, 130, 419-428. https://doi.org/10.1016/j.ijbiomac.2019.02.151

Dal’ Magro, G. P., & Talamini, E. (2019). Estimating the magnitude of the food loss and waste generated in Brazil. Waste Management & Research: The Journal for a Sustainable Circular Economy, 37(7), 706-716. https://doi.org/10.1177/0734242X19836710

Dantas, E. A., Costa, S. S., Cruz, L. S., Bramont, W. B., Costa, A. S., Padilha, F. F., Druzian, J. I., & Machado, B. A. S. (2015). Caracterização e avaliação das propriedades antioxidantes de filmes biodegradáveis incorporados com polpas de frutas tropicais [Characterization and evaluation of the antioxidant properties of biodegradable films incorporated with tropical fruit pulps]. Ciência Rural, 45(1), 142-148. https://doi.org/10.1590/0103-8478cr20131458

Engel, J. B., Ginity, M. M., Luchese, C. L., Tessaro, I. C., & Spada, J. C. (2020). Reuse of diferent agroindustrial wastes: pinhão and pecan nutshells incorporated into biocomposites using thermocompression. Journal of Polymers and the Environment, 28, 1431-1440. https://doi.org/10.1007/s10924-020-01696-w

Evangelho, J. A., Dannenberg, G. S., Biduski, B., Halal, S. L. M., Kringel, D. H., Gularte, M. A., Fiorentini, A. M., & Zavareze, E. R. (2019). Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydrate Polymers, 222, 114981. https://doi.org/10.1016/j.carbpol.2019.114981

Fai, A. E. C., Souza, M. R. A., Barros, S. T., Bruno, N. V., Ferreira, M. S. L., & Gonçalves, E. C. B. A. (2016). Development and evaluation of biodegradable films and coatings obtained from fruit and vegetable residues applied to fresh-cut carrot (Daucus carota L.). Postharvest Biology and Technology, 112, 194-204. http://dx.doi.org/10.1016/j.postharvbio.2015.09.021

Fanzo, J., Hood, A., & Davis, C. (2020). Eating our way through the Anthropocene. Physiology & Behavior, 222, 112929. https://doi.org/10.1016/j.physbeh.2020.112929

FAO. (2011). Global food losses and food wastes: extent, causes and prevention. Rome, <http://www.fao.org/3/i2697e/i2697e.pdf>.

FAO. (2014). Mitigation of Food Wastage - Societal Costs and Benefits. Rome, FAO. <http://www.fao.org/3/i3989e/i3989e.pdf>.

FAO. (2015). Food wastage footprint & Climate Change. Rome, FAO. <http://www.fao.org/3/bb144e/bb144e.pdf>.

FAO. (2019). Key Facts on Food Loss and Waste You Should Know! <http://www.fao.org/3/i2697e/i2697e.pdf>.

Faria, L. U. S., Pacheco, B. J. S., Oliveira, G. C., & Silva, J. L. S. (2020). Production of cellulose nanocrystals from pineapple crown fibers through alkaline pretreatment and acid hydrolysis under different conditions. Journal of Materials Research and Technology, 9(6), 12346-12353. https://doi.org/10.1016/j.jmrt.2020.08.093

Faustino, M., Veiga, M., Sousa, P., Costa, E. M., Silva, S., & Pintado, M. (2019). Agro-food byproducts as a new source of natural food additives. Molecules, 24(6), 1056. https://doi.org/10.3390/molecules24061056

Fidelis, M., De Moura, C., Kabbas, T., Pap, N., Mattila, P., Mäkinen, S., Putnik, P., Kovačević, D. B., Tian, Y., Yang, B. Y., & Granato, D. (2019). Fruit seeds as sources of bioactive compounds: sustainable production of high value-added ingredients from by-products within circular economy. Molecules, 24(21), 3854. https://doi.org/10.3390/molecules24213854

Fitch-Vargas, P. R., Aguilar-Palazuelos, E., Zazueta-Morales, J. J., Vega-García, M. O., Valdez-Morales, J. E., Martínez-Bustos, F., Jacobo-Valenzuela, N. (2016). Physicochemical and microstructural characterization of corn starch edible films obtained by a combination of extrusion technology and casting technique. Journal of Food Science, 81(9), E2224 – E2232. https://doi.org/10.1111/1750-3841.13416

Foundation, E. M. (2021). New Plastics Economy. Disponível em: <https://www.ellenmacarthurfoundation.org/our-work/activities/new-plastics-economy>. Acesso em: 14 de julho de 2021

FORBES. (2021). Quem diria, travestida de embalagem, a mandioca está cada vez mais em alta. Disponível em: <https://forbes.com.br/forbesesg/2021/05/quem-diria-travestida-de-embalagem-a-mandioca-esta-cada-vez-mais-em-alta/>. Acesso em: 13 de maio de 2021.

Freitas, P. A. V., Silva, R. R. A., de Oliveira, T. V., Soares, R. R. A., Junior, N. S., Moraes, A. R. F., Pires, A. C. D. S., & Soares, N. F. F. (2020). Development and characterization of intelligent cellulose acetate-based films using red cabbage extract for visual detection of volatile bases. LWT - Food Science and Technology, 132, 109780. https://doi.org/10.1016/j.lwt.2020.109780

Fu, L., Zhu, J., Zhang, S., Li, X., Zhang, B., Pu, H., Li, L., Wang, Q. (2018). Hierarchical structure and thermal behavior of hydrophobic starch-based films with different amylose contents. Carbohydrate Polymers, 181, 528–535. https://doi.org/10.1016/j.carbpol.2017.12.010

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances., 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Guo, Z., Ge, X., Li, W., Yang, L., Han, L., Yu, Q-L. (2021). Active-intelligent film based on pectin from watermelon peel containing beetroot extract to monitor the freshness of packaged chilled beef. Food Hydrocolloids, 119, 106751. https://doi.org/10.1016/j.foodhyd.2021.106751

Gustavsson, J., Cederberg, C., Sonesson, U., Otterdijk, R. V., & Meybeck, A. (2011). Global food losses and food waste – extent, causes and prevention, food loss and food waste: causes and solutions. Food and Agriculture Organization of the United Nations (FAO), Rome. https://doi.org/10.4337/9781788975391

Hall, D. (2017). The Guardian. Throwaway culture has spread packaging waste worldwide: here's what to do about it. Disponível em: <https://www.theguardian.com/environment/2017/mar/13/waste-plastic-food-packaging-recycling-throwaway-culture-dave-hall>. Acesso em: 11 de julho de 2021.

Hornung, P. S., Ávila, S., Apea-Bah, F. B., Liu, J., Teixeira, G. L., Ribani, R. H., & Beta, T. (2020). Sustainable use of Ilex paraguariensis waste in improving biodegradable corn starch films’ mechanical, thermal and bioactive properties. Journal of Polymers and the Environment, 28, 1696-1709. https://doi.org/10.1007/s10924-020-01723-w

Huang, L., Zhao, H., Yi, T., Qi, M., Xu, H., Mo, Q., Huang, C., Wang, S., & Liu, Y. (2020). Preparation and properties of cassava residue cellulose nanofibril/cassava starch composite films. Nanomaterials, 10(4), 755. https://doi.org/10.3390/nano10040755

Iahnke, A. O. S., Costa, T. M. H., Rios, A. O., & Flôres, S. H. (2015b). Residues of minimally processed carrot and gelatin capsules: potential materials for packaging films. Industrial Crops and Products, 76, 1071-1078. http://dx.doi.org/10.1016/j.indcrop.2015.08.025

Iahnke, A. O. S., Costa, T. M. H., Rios, A. O., & Flôres, S. H. (2015a). Antioxidant films based on gelatin capsules and minimally processed beet root (Beta vulgaris L. var. Conditiva) residues. Journal of Applied Polymer Science, 133(10). https://doi.org/10.1002/app.43094

Jácome, M. C. M. B., Padilha, C. E. A., Arrais, M. R. N., Leitão, A. L. O. S., Júnior, F. C. S., & Santos, E. S. (2020). Valorization of mangaba residue (Hancornia speciosa Gomes) for polygalacturonase production from Aspergillus niger IOC 4003 and fabrication of active chitosan films. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01102-4

Jiménez-Moreno, N., Esparza, I., Bimbela, F., Gandía, L. M., & Ancín-Azpilicueta, C. (2020). Valorization of selected fruit and vegetable wastes as bioactive compounds: Opportunities and challenges. Critical Reviews in Environmental Science and Technology, 50(20), 2061–2108. https://doi.org/10.1080/10643389.2019.1694819

Jirukkakul, N. (2016). The study of edible film production from unriped banana flour and riped banana puree. International Food Research Journal, 23(1), 95-101.

Jurgilevich, A., Birge, T., Kentala-Lehtonen, J., Korhonen-Kurki, K., Pietiäinen, J., Saikku, L, & Schösler. H. (2016). Transition towards circular economy in the food system. Sustainability, 8, 69. https://doi.org/10.3390/su8010069

Lemaire, A., & Limbourg, S. (2019). How can food loss and waste management achieve sustainable development goals? Journal of Cleaner Production, 234, 1221–1234. https://doi.org/10.1016/j.jclepro.2019.06.226

Luchese, C. L., Abdalla, V. F., Spada, J. C., Tessaro, I. C. (2018). Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food hydrocolloids, 82, 209-218. https://doi.org/10.1016/j.foodhyd.2018.04.010

Luchese, C. L., Pavoni, J. M. F., & Tessaro, I. C. (2021). Infuence of the incorporation form of waste from the production of orange juice in the properties of cassava starch-based films. Food Hydrocolloids, 117, 106730. https://doi.org/10.101F/j.foodhyd.2021.10F7G0

Luchese, C. L., Pavoni, J. M. F., Spada, J. C., & Tessaro, I. C. (2019). Influence of blueberry and jaboticaba agroindustrial residue particle size on color change of corn starch-based films submitted to different pH values solutions. Journal of Renewable Materials, 7(3), 235–243. https://doi.org/10.32604/jrm.2019.00033

Luttenberger, L. R. (2019). Circular economy and food packaging/food nexus. In: International Conference MATRIB, Vela Luka.

Maniglia, B. C., & Tapia-Blácido, D. R. (2019). Structural modification of fiber and starch in turmeric residue by chemical and mechanical treatment for production of biodegradable films. International Journal of Biological Macromolecules, 126, 507-516. https://doi.org/10.1016/j.ijbiomac.2018.12.206

Maraveas, C. (2020). Production of sustainable and biodegradable polymers from agricultural waste. Polymers, 12(5), 1127. https://doi.org/10.3390/polym12051127

Martelli, M. R., Barros, T. T., & Assis, O. B. G. (2014). Filmes de polpa de banana produzidos por batelada: propriedades mecânicas e coloração [Puree films from bananas processed in the batching mode: mechanical properties and coloring variations]. Polímeros: Ciência e Tecnologia, 24(1), 137-142. http://dx.doi.org/10.4322/polimeros.2014.062

Martelli-Tosi, M., Assis, O. B. G., Silva, N. C., Esposto, B. S., Martins, M. A., & Tapia-Blácido, D. R. (2017). Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohydrate Polymers, 157, 512-520. http://dx.doi.org/10.1016/j.carbpol.2016.10.013

Martelli-Tosi, M., Masson, M. M., Silva, N. C., Esposto, B. S., Barros, T. T., Assis, O. B.G., & Tapia-Blácido, D. R. (2018). Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydrate Polymers, 198, 61–68. https://doi.org/10.1016/j.carbpol.2018.06.053

Martins, M. P., Dagostin, J. L. A., Franco, T. S., Muñiz, G. I. B., & Masson, M. L. (2020). Application of cellulose nanofibrils isolated from an agroindustrial residue of peach palm in cassava starch films. Food Biophysics, 15, 323–334. https://doi.org/10.1007/s11483-020-09626-y

Matheus, J. R. V., Assis, R. M., Correia, T. R., Marques, M. R. C., Leite, M. C. A. M., Pelissari, F. M., Miyahira, R. F., & Fai, A. E. C. (2021b). Biodegradable and edible film based on persimmon (Diospyros kaki L.) used as a lid for minimally processed vegetables packaging. Food and Bioprocess Technology, 14, 765–779. https://doi.org/10.1007/s11947-021-02595-1

Matheus, J. R. V., Miyahira, R. F., & Fai, A. E. C. (2021a). Biodegradable films based on fruit puree: a brief review. Critical Reviews in Food Science and Nutrition, 61(12), 2090-2097. https://doi.org/10.1080/10408398.2020.1772715

Melo, P. E. F., Silva, A. P. M., Marques, F. P., Ribeiro, P. R. V., Filho, M. S. M. S., Brito, E. S., Lima, J. R., & Azeredo, H. M. C. (2019a). Antioxidant films from mango kernel components. Food Hydrocolloids, 95, 487–495. https://doi.org/10.1016/j.foodhyd.2019.04.061

Melo, P. T. S., Nunes, J. C., Otoni, C. G., Aouada, F. A., & Moura, M. R. (2019b). Combining cupuassu (Theobroma grandiflorum) puree, pectin, and chitosan nanoparticles into novel edible films for food packaging applications. Journal of Food Science. https://doi.org/10.1111/1750-3841.14685

Mellinas, C., Ramos, M., Jiménez, A., & Garrigós, M. C. (2020). Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials, 13(3), 673. https://doi.org/10.3390/ma13030673

Mendes, J. F., Norcino, L. B., Manrich, A., Pinheiro, A. C. M., Oliveira, J. E., & Mattoso, L. H. C. (2020). Development, physical-chemical properties, and photodegradation of pectin film reinforced with malt bagasse fibers by continuous casting. Journal Applied Polimer Science, 137(39), 49178. https://doi.org/10.1002/app.49178

Mendes, N. S., Santos, M. C. P., Seljan, M. P., Silva, F. C., Coimbra, P. P. S., Souza, J. D. R. P., Fai, A. E. C., Kawaguti, H. Y., Moreira, S. G., Gonçalves, E. C. B. A. (2020). Characterization and utilization of fruit and vegetable residue flour for the development of functional foods. Research, Society and Development, 9(12), e43191211034. https://doi.org/10.33448/rsd-v9i12.11034

Meys, R., Frick, F., Westhues, S., Sternberg, A., Klankermayer, J., & Bardow, A. (2020). Towards a circular economy for plastic packaging wastes – the environmental potential of chemical recycling. Resources, Conservation and Recycling, 162, 105010. https://doi.org/10.1016/j.resconrec.2020.105010

Moro, T. M. A., Ascheri, J. L. R., Ortiz, J. A. R., Carvalho, C. W. P., & Meléndez-Arévalo, A. (2017). Bioplastics of native starches reinforced with passion fruit peel. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-017-1944-x

Munhoz, D. R., Moreira, F. K., Bresolin, J. D., Bernardo, M. P., Sousa, C. P., & Mattoso, L. H. (2018). Sustainable production and in vitro biodegradability of edible films from yellow passion fruit co-products via continuous casting. ACS Applied Polymer Materials, 6(8), 9883-9892. http://dx.doi.org/10.1021/acssuschemeng.8b01101

Murray, A., Skene, K., & Haynes, K. (2017). The circular economy: an interdisciplinary exploration of the concept and application in a global context. Journal of Business Ethics, 140(3), 369–380. https://doi.org/10.1007/s10551-015-2693-2

Nascimento, J. A. A., Santos, A. F., Silva, I. D. L., Falcão, E. H. L., Britto, D., & Vinhas, G. M. (2021). Physico-chemical, mechanical and morphological properties of biodegradable films based on arrowroot starch and poly(vinyl alcohol). Journal of Macromolecular Science, Part B-Physics, 6. https://doi.org/10.1080/00222348.2021.1949836

Neto, B. A. M., Junior, C. C. M. F., Silva, E. G. P., Franco, M., Santos Reis, N., Ferreira Bonomo, R. C., Almeida, P. F., & Pontes, K. V. (2018). Biodegradable thermoplastic starch of peach palm (Bactris gasipaes kunth) fruit: production and characterization. International Journal of Food Properties. https://doi.org/10.1080/10942912.2017.1372472

Nogueira, J. F., Soares, C. T., Cavasini, R., Fakhouri, F. M., P de Oliveira, R. A. (2019). Bioactive films of arrowroot starch and blackberry pulp: Physical, mechanical and barrier properties and stability to pH and sterilization. Food Chemistry, 275, 417-425. https://doi.org/10.101F/j.foodchem.2018.0B.054

Oldoni, F. C. A., Bernardo, M. P., Filho, J. G. O., Aguiar, A. C., Moreira, F. K. V., Mattoso, L. H. C., Colnago, L. A., & Ferreira, M. D. (2021). Valorization of mangoes with internal breakdown through the production of edible films by continuous solution casting. LWT – Food Science and Technology, 145, 111339. https://doi.org/10.1016/j.lwt.2021.111339

Oliveira, D. A., Angonese, M., Ferreira, S. R. S., & Gomes, C. L. (2017). Nanoencapsulation of passion fruit by-products extracts for enhanced antimicrobial activity. Food and Bioproducts Processing, 104, 137-146. https://doi.org/10.1016/j.fbp.2017.05.009

Omran, A. A. B., Mohammed, A. A. B. A., Sapuan, S. M., Ilyas, R. A., Asyraf, M. R. M., Rahimian Koloor, S. S., & Petru, M. (2021). Micro- and nanocellulose in polymer composite materials: a review. Polymers, 13. https://doi.org/10.3390/ polym13020231

ONU. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development United Nations, p. 1–35. < https://sdgs.un.org/2030agenda>.

Otoni, C. G., Avena-Bustillos, R. J., Azeredo, H. M. C., Lorevice, M. V., Moura, M. R., Mattoso, L. H. C., & McHugh, T. H. (2017). Recent advances on edible films based on fruits and vegetables - a review. Comprehensive Reviews in Food Science and Food Safety, 16, 1151-1169. https://doi.org/10.1111/1541-4337.12281

Otoni, C.G., Lodi, B. D., Lorevice, M. V., Leitão, R. C., Ferreira, M. D., Moura, M. R., & Mattoso, L. H.C. (2018). Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Industrial Crops and Products, 121, 66–72. https://doi.org/10.1016/j.indcrop.2018.05.003

Pagno, C. H., Costa, T. M. H., Menezes, E. W., Benvenutti, E. V., Hertz, P. F., Matte, C. R., Tosati, J. V., Monteiro, A. R., Rios, A. O., & Flôres, S. H. (2015). Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry, 173, 755-762. https://doi.org/10.1016/j.foodchem.2014.10.068

Pakutsah, K., & Aht-Ong, D. (2020). Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties. International Journal of Biological Macromolecules, 145, 64-76. https://doi.org/10.1016/j.ijbiomac.2019.12.172

Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. D. A., & Menegalli, F. C. (2017). Nanocomposites based on banana starch reinforced with celulose nanofibers isolated from banana peels. Journal of Colloid and Interface Science, 505, 154-167. https://doi.org/10.1016/j.jcis.2017.05.106

Pelissari, F. M., Sobral, P. J. D. A., & Menegalli, F. C. (2014). Isolation and characterization of cellulose nanofibers from banana peels. Cellulose, 21, 417-32.

PLASTICSEUROPE. (2020). Plastics – the Facts 2020. An analysis of European latest plastics production, demand and waste data. Disponível em: <https://www.plasticseurope.org/application/files/8016/1125/2189/AF_Plastics_the_facts-WEB-2020-ING_FINAL.pdf>. Acesso em: 09 de maio de 2021.

Porpino, G., Lourenço, C. E., Araújo, C.M., & Bastos, A. (2018). Intercâmbio Brasil – União Europeia sobre desperdício de alimentos. Relatório final de pesquisa. Brasília: Diálogos Setoriais União Europeia – Brasil. < http:// www.sectordialogues.org/publicacao

Ranganathan, S., Dutta, S., Moses, J. A., & Anandharamakrishnan, C. (2020). Utilization of food waste streams for the production of biopolymers. Heliyon, 6(9), e04891. https://doi.org/10.1016/j.heliyon.2020.e04891

Rodríguez, G. M., Sibaja, J. C., Espitia, P. J. P., Otoni, C. G. (2020). Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocolloids, 103, 105630. https://doi.org/10.1016/j.foodhyd.2019.105630

Rodsamran, P, & Sothornvit, R. (2019a). Lime peel pectin integrated with coconut water and lime peel extract as a new bioactive film sachet to retard soybean oil oxidation. Food Hydrocolloids, 97, 105173. https://doi.org/10.1016/j.foodhyd.2019.105173

Rodsamran, P, & Sothornvit, R. (2019b). Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. Food and Bioproducts Processing, 118, 198-206. https://doi.org/10.1016/j.fbp.2019.09.010

Sá, N. M. S. M., Mattos, A. L. A., Silva, L. M. A., Brito, E. S., Rosa, M. F., & Azeredo, H. M. C. (2020). From cashew byproducts to biodegradable active materials: bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. International Journal of Biological Macromolecules, 161, 1337–1345. https://doi.org/10.1016/j.ijbiomac.2020.07.269

Sanches, M. A. R., Camelo-Silva, C., Tussolini, L., Tussolini, M., Zambiazi, R. C., & Pertuzatti, P. B. (2021). Development, characterization and optimization of biopolymers films based on starch and flour from jabuticaba (Myrciaria cauliflora) peel. Food Chemistry, 343, 128430. https://doi.org/10.1016/j.foodchem.2020.128430

Santos, K. L., Panizzon, J., Cenci, M. M., Grabowski, G., & Jahno, V. D. (2020). Food losses and waste: reflections on the current brazilian scenario. Brazilian Journal of Food Technology, 23, e2019134. https://doi.org/10.1590/1981-6723.13419

Santos, N. L., Braga, R. C., Bastos, M. S. R., Cunha, P. L. R., Mendes, F. R. S., Galvão, A. M. M. T., Bezerra, G. S., & Passos, A. A. C. (2019). Preparation and characterization of Xyloglucan films extracted from Tamarindus indica seeds for packaging cut-up ‘Sunrise Solo’ papaya. International Journal of Biological Macromolecules, 132, 1163-1175. https://doi.org/10.1016/j.ijbiomac.2019.04.044

Sartori, T., & Menegalli, F. C. (2016). Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid. Food Hydrolloids, 55, 210-219. http://dx.doi.org/10.1016/j.foodhyd.2015.11.018

Serrano-León, J. S., Bergamaschi, K. B., Yoshida, C. M. P., Saldaña, E., Selani, M. M., Rios-Mera, J. D., Alencar, S. M., & Contreras-Castillo, C. J. (2018). Chitosan active films containing agro-industrial residue extracts for shelf life extension of chicken restructured product. Food Research International, 108, 93-100. https://doi.org/10.1016/j.foodres.2018.03.031

Sganzerla, W. G., Ribeiro, C. P. P., Uliana, N. R., Rodrigues, M. B. C., Rosa, C. G., Ferrareze, J. P., Veeck, A. P. L., & Nunes, M. R. (2021). Bioactive and pH-sensitive films based on carboxymethyl cellulose and blackberry (Morus nigra L.) anthocyanin-rich extract: A perspective coating material to improve the shelf life of cherry tomato (Solanum lycopersicum L. var. cerasiforme). Biocatalysis and Agricultural Biotechnology, 33, 101989. https://doi.org/10.1016/j.bcab.2021.101989

Sganzerla, W. G., Rosa, G. B., Ferreira, A. L. A., Rosa, C. G., Beling, P. C., Xavier, L. O., Hansen, C. M., Ferrareze, J. P., Nunes, M. R., Barreto, P. L. M., & Veeck, A. P. L. (2020). Bioactive food packaging based on starch, citric pectin and functionalized with Acca sellowiana waste by-product: characterization and application in the postharvest conservation of apple. International Journal of Biological Macromolecules, 147, 295-303. https://doi.org/10.1016/j.ijbiomac.2020.01.074

Sharmila, G., Muthukumaran, C., Manoj Kumar, N., Sivakumar, V. M., & Thirumarimurugan, M. (2020). Current Developments in Biotechnology and Bioengineering. Food waste valorization for biopolymer production, 233-249. https://doi.org/10.1016/B978-0-444-64321-6.00012-4

Shen, M, Song, B, Zeng, Guangming, Z, Yaxin, H, W, Wen, X, & Tang, W. (2020). Are biodegradable plastics a promising solution to solve the global plastic pollution? Environmental Pollution, 263, 114469. https://doi.org/10.1016/j.envpol.2020.114469

Shogren, R., Wood, D., Orts, W., & Glenn, G. (2019). Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 19, 194–215. https://doi.org/10.1016/j.spc.2019.04.007

Silva, A. L. P., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chemical Engineering Journal, 405, 126683. https://doi.org/10.1016/j.cej.2020.126683

Silva, A. P. M., Oliveira, A. V., Pontes, S. M. A., Pereira, A. L. S., Filho, M. S. M. S., Rosa, M. F., Azeredo, H. M. C. (2019). Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydrate Polymers, 211, 209-216. https://doi.org/10.1016/j.carbpol.2019.02.013

Silva, L. M. R. D., Figueiredo, E. A. T. D., Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W. D., Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398-404. https://doi.org/ 10.1016/j.foodchem.2013.08.001.

Silva, M. L. T., Brinques, G. B., & Gurak, P. D. (2020c). Development and characterization of corn starch bioplastics containing dry sprout by-product flour. Brazilian Journal of Food Technology, 23, e2018326. https://doi.org/10.1590/1981-6723.32618

Silva, S. M. F., Ribeiro, H. L., Mattos, A. L. A., Borges, M. F., Rosa, M. F., & Azeredo, H. M. C. (2020a). Films from cashew byproducts: cashew gum and bacterial cellulose from cashew apple juice. Journal of Food Science and Technology, 58, 1979–1986. https://doi.org/10.1007/s13197-020-04709-7

Silva, V. D. M., Macedo, M. C. C., Rodrigues, C. G., Santos, A. N., Loyola, A. C. F., & Fante, C. A. (2020b). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience, 38, 100750. https://doi.org/10.1016/j.fbio.2020.100750

Sogut, E., & Cakmak, H. (2020). Utilization of carrot (Daucus carota L.) fiber as a filler for chitosan-based films. Food Hydrocolloids, 106, 105861. https://doi.org/10.1016/j.foodhyd.2020.105861

Soofi, M., Alizadeh, A., Hamishehkar, H., Almasi, H., & Roufegarinejad, L. (2021). Preparation of nanobiocomposite film based on lemon waste containing cellulose nanofiber and savory essential oil: A new biodegradable active packaging system. International Journal of Biological Macromolecules, 169, 352-361. https://doi.org/10.1016/j.ijbiomac.2020.12.114

Sousa, M. S. B., Vieira, L. M., Silva, M. J. M., & Lima, A. (2011). Caracterização nutricional e compostos antioxidantes em resíduos de polpas de frutas tropicais. Ciência e Agrotecnologia, 35(3), 554-559. https://doi.org/10.1590/S1413-70542011000300017.

Souza, E., Gottschalk, L., & Freitas-Silva, O. (2020b). Overview of nanocellulose in food packaging. Recent Patents on Food, Nutrition & Agriculture, 10. https://doi.org/10.2174/2212798410666190715153715

Souza, F. R. A., Oliveira, J. S. T., Silva, D. P., Oliveira, M. G., Neves, D. D., Silva, W. E., & Stamford, T. C. M. (2021). Biopolímeros na indústria de alimentos: do aproveitamento de resíduos agroindustriais a produção de biopolímeros. Avanços em Ciência e Tecnologia de Alimentos, 4 (pp. 370-388), Editora Científica Digital.

Souza, P. G., Santos, S. F., Nogueira, T. B. B., Santana, I., Fai, A. E. C. (2020a). Avaliação de desperdício em restaurantes comerciais do tipo self-service total na Universidade do Estado do Rio de Janeiro (UERJ). Research, Society and Development, 9(6), e167963605. https://doi.org/10.33448/rsd-v9i6.3605

Suriyatem, R., Auras, R. A., & Rachtanapun, P. (2018). Improvement of mechanical properties and thermal stability of biodegradable rice starch–based films blended with carboxymethyl chitosan. Industrial Crops and Products, 122, 37-48. https://doi.org/10.1016/j.indcrop.2018.05.047

Takeyama, M. M., Kawaguti, H. Y., Koblitz, M. G. B., & Fai, A. E. C. (2020). Agroindustrial wastes as promising raw materials for obtaining yeast bioproducts - a brief review. [Resíduos agroindustriais como insumos promissores para obtenção de bioprodutos por

leveduras - uma breve revisão]. Research, Society and Development, 9(7), e588974488.

Tako, Y., Matheus, J. R. V., & Fai, A. E. C. (2021). Economia circular para repensar as embalagens: uma breve revisão. Interfaces entre Desenvolvimento, Meio Ambiente e Sustentabilidade 2. Atena. https://doi.org/10.22533/at.ed.571211503

Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2019). Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resources, Conservation & Recycling, 149, 413–426. https://doi.org/10.1016/j.resconrec.2019.05.003

Tencati, A., Pogutz, S., Moda, B., Brambilla, M., & Cacia, C. (2016). Prevention policies addressing packaging and packaging waste: Some emerging trends. Waste Management, 56, 35–45.

Theivasanthi, T., Anne Christma, F. L., Toyin, A. J., Gopinath, S. C. B., & Ravichandran, R. (2018). Synthesis and characterization of cotton fiber-based nanocellulose. International Journal of Biological Macromolecules, 109, 832-836. https://doi.org/10.1016/j.ijbiomac.2017.11.054

Tibolla, H., Feltre, G., Sartori, T., Czaikoski, A., Pelissari, F.M., Menegalli, F.C., & Cunha, R.L. (2020). Shelf life of cashew nut kernels packed in banana starch-based nanocomposites. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.14920

Tirado-Gallegos, J. M., Zamudio-Flores, P. B., Ornelas-Paz, J. J., et al. (2018). Elaboration and characterization of active apple starch films incorporated with ellagic acid. Coatings, 8(11), 384. https://doi.org/10.3390/coatings8110384

Tosati, J. V., Messias, V. C., Carvalho, P. I. N., Pollonio, M. A. R., Meireles, M. A. A., & Monteiro, A. R. (2017). Antimicrobial effect of edible coating blend based on turmeric starch residue and gelatin applied onto fresh frankfurter sausage. Food and Bioprocess Technology, 10, 2165-2175. https://doi.org/10.1007/s11947-017-1985-1

Travalini, A. P., Lamsal, B., Magalhães, W. L. E., & Demiate, I. M. (2019). Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 139, 1151–1161. https://doi.org/10.1016/j.ijbiomac.2019.08.115

UNEP. (2018). Single-use plastics: a roadmap for sustainability. <https://www.unep.org/resources/report/single-use-plastics-roadmap-sustainability>.

UNEP. (2021). Food waste index report. Disponível em: <https://drive.google.com/file/d/1KTB1mq9sSWXx38bDfvF0PQy0sEKYsgrn/view>. Acesso em: 13 de maio de 2021.

Velarde, E. D. A., Martínez, D. L. P., Salem, A. Z. M., García, P. G. M., & Berasain, M. D. M. (2020). Antioxidant and antimicrobial capacity of three agroindustrial residues as animal feeds. Agroforestry Systems, 94, 1393-1402. https://doi.org/10.1007/s10457-018-00343-7

Velenturf, A. P. M., & Purnell, P. (2021). Principles for a sustainable circular economy. Sustainable Production and Consumption, 27, 1437-1457. https://doi.org/10.1016/j.spc.2021.02.018

Vidal, O. L., Tsukui, A., Garrett, R., Rocha-Leão, M. H. M., Carvalho, C. W. P., Freitas, S. P., Rezende, C. M., & Ferreira, M. S. L. (2019). Production of bioactive films of carboxymethyl cellulose enriched with green coffee oil and its residues. International Journal of Biological Macromolecules, 146, 730-738. https://doi.org/10.1016/j.ijbiomac.2019.10.123

Wang, L. F., Shankar, S., & Rhim, J. W. (2017). Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocolloids, 63, 201-208. https://doi.org/10.1016/j.foodhyd.2016.08.041

Willett, W., Rockström, J., Loken, B., et al. (2019). Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet, 393, 447-492. https://doi.org/10.1016/S0140-6736(18)31788-4

Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T., & Thakur, V. K. (2018). Recent progress in biodegradable polymers and nanocomposites-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23(4), 383-395. https://doi.org/10.1080/1023666X.2018.1455382

Yepes, O. O., Di Giogio, L., Goyanes, S., Mauri, A., Famá, L. (2019). Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydrate Polymers, 208, 221–231. https://doi.org/10.1016/j.carbpol.2018.12.030

Zheng, J., & Suh, S. (2019). Strategies to reduce the global carbon footprint of plastics. Nature Climate Change, 9(5), 374-378. https://doi.org/10.1038/s41558-019-0459-z

Zuin, V. G., & Ramin, L. Z. (2018). Green and sustainable separation of natural products from agro-industrial waste: challenges, potentialities, and perspectives on emerging approaches. Topics in Current Chemistry, 376(3), 1-54. https://doi.org/10.1007/s41061-017-0182-z

Published

31/07/2021

How to Cite

MATHEUS, J. R. V.; SATORIVA, J. M.; BARONE, A. S.; ANDRADE, C. J. de; FAI, A. E. C. Biodegradable films and vegetable reinforcement agents: A focus on Brazilian studies from the perspective of the circular economy. Research, Society and Development, [S. l.], v. 10, n. 9, p. e49210918278, 2021. DOI: 10.33448/rsd-v10i9.18278. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18278. Acesso em: 21 sep. 2021.

Issue

Section

Review Article