Neuroprotective effects of taurine on SH-SY5Y cells under hydrocortisone induced stress




Alzheimer's Disease; Oxidative Stress; Neuroprotection; Hydrocortisone.


Alzheimer's disease (AD) is the most common, progressive and irreversible neurodegenerative disorder, characterized by memory loss, cognitive impairment and behavioral abnormalities. Although there is no cure, several study strategies seek to elucidate mechanisms of the disease. Recent studies address the benefits of taurine. Thus, the present study aims to analyze neuroprotective effects of taurine in human neuroblastoma (SH-SY5Y), using an in vitro experimental model of oxidative stress induced by hydrocortisone. This work showed for the first time that taurine can promote neuroprotection in SH-SY5Y under oxidative stress caused by hydrocortisone. Cell viability was evaluated using crystal violet and the evaluation of cell morphology was performed by scanning electron microscopy (SEM). The viability of SH-SY5Y pre-treated with taurine and stressed with hydrocortisone was preserved, compared to the stressed only group, which was also morphologically observed. Therefore, taurine can represent a considerable therapeutic candidate in the prevention of neurodegenerative diseases, such as AD.

Author Biography

Alessandro Eustaquio Campos Granato, Universidade de São Paulo







Baker-Nigh, A., Vahedi, S., Davis, E. G., Weintraub, S., Bigio, E. H., Klein, W. L., & Geula, C. (2015). Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer’s disease. Brain, 138(6), 1722–1737.

Barbosa, M. G. A. et. al. (2020). The use of Canabidiol compound in the treatment of Alzheimer’s disease(literature review). Journal of Chemical Information and Modeling, 53(9), 1689–1699.

Belyaev, N. D., Kellett, K. A. B., Beckett, C., Makova, N. Z., Revett, T. J., Nalivaeva, N. N., Hooper, N. M., & Turner, A. J. (2010). The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a β-secretase-dependent pathway. Journal of Biological Chemistry, 285(53), 41443–41454.

Conrado, A. B., Maina, S., Moseley, H., Francioso, A., Mosca, L., Capuozzo, E., & Fontana, M. (2017). Neuroprotective Effect of Taurine-Rich Cuttlefish (Sepia officinalis) Extract Against Hydrogen Peroxide-Induced Oxidative Stress in SH-SY5Y Cells. 975, 551–561.

Corrêa, M. S., Vedovelli, K., Giacobbo, B. L., de Souza, C. E. B., Ferrari, P., de Lima Argimon, I. I., Walz, J. C., Kapczinski, F., & Bromberg, E. (2015). Psychophysiological correlates of cognitive deficits in family caregivers of patients with Alzheimer Disease. Neuroscience, 286, 371–382.

Corrêa, Márcio Silveira, Giacobbo, B. L., Vedovelli, K., De Lima, D. B., Ferrari, P., De Lima Argimon, I. I., CesarWalz, J., & Bromberg, E. (2016). Age effects on cognitive and physiological parameters in familial caregivers of Alzheimer’s disease patients. PLoS ONE, 11(10), 1–16.

Curto, M., Martocchia, A., Ferracuti, S., Comite, F., Scaccianoce, S., Girardi, P., Nicoletti, F., & Falaschi, P. (2017). Increased Total Urinary Cortisol (tUC) and Serum Brain-derived Neurotrophic Factor (BDNF) Ratio in Alzheimer Disease (AD)-affected Patients. Alzheimer Disease and Associated Disorders, 31(2), 173–176.

Dailton Guedes de Oliveira Moraes, C., Henrique Godoi, B., Chaves Silva Carvalho, I., Cristina Pinto, J., Carvalho Rossato, R., Soares da Silva, N., & Pacheco Soares, C. (2019). Genotoxic effects of photodynamic therapy in laryngeal cancer cells – An in vitro study. Experimental Biology and Medicine, 244(3), 262–271.

Falco, A., Cukierman, D. S., Hauser-Davis, R. A., & Rey, N. A. (2016). Doença de Alzheimer: Hipóteses etiológicas e perspectivas de tratamento. Quimica Nova, 39(1), 63–80.

La Rubia Ortí, J. E., Castillo, S. S., Benlloch, M., Rochina, M. J., Arreche, S. C., & García-Pardo, M. P. (2017). Impact of the relationship of stress and the immune system in the appearance of Alzheimer’s disease. Journal of Alzheimer’s Disease, 55(3), 899–903.

Gnegy, M. E. (2012). Catecholamines. Basic Neurochemistry, 283–299.

Grothe, M. J., Schuster, C., Bauer, F., Prudlo, J., Teipel, S. J., & Heinsen, H. (2014). Atrophy of the cholinergic basal forebrain in dementia with lewy bodies and alzheimer’s disease dementia. Journal of Neurology, 261(1), 1939–1948.

Hansen, S. H., Andersen, M. L., Cornett, C., Gradinaru, R., & Grunnet, N. (2010). A role for taurine in mitochondrial function. Journal of Biomedical Science, 17(SUPPL. 1), 1–8.

Inelia Morales, G., Gonzalo Faŕas, G., & Ricardo, B. (2010). La neuroinfamacín como factor detonante del desarrollo de la enfermedad de Alzheimer. Revista Chilena de Neuro-Psiquiatria, 48(1), 49–57.

Jack, C. R., & Holtzman, D. M. (2013). Biomarker modeling of alzheimer’s disease. Neuron, 80(6), 1347–1358.

Jeanneteau, F., & Chao, M. V. (2013). Are BDNF and glucocorticoid activities calibrated? Neuroscience, 239, 173–195.

Kawahara, M. (2012). Neurotoxicity of β-Amyloid-Amyloid Protein: Oligomerization, Channel Formation and Calcium Dyshomeostasis. Current Pharmaceutical Design, 16(25), 2779–2789.

Kilb, W., & Fukuda, A. (2017). Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Frontiers in Cellular Neuroscience, 11(October), 1–13.

Lee, Y., Ham, S., Lee, Y. Il, Jo, M., Kim, H., Kang, H., Jo, A., Lee, G. H., Mo, Y. J., Park, S. C., Lee, Y. S., & Shin, J. H. (2017). Hydrocortisone-induced parkin prevents dopaminergic cell death via CREB pathway in Parkinson’s disease model. Scientific Reports, 7(1), 1–13.

Liu, C. C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein e and Alzheimer disease: Risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118.

Marcinkiewicz, J., & Kontny, E. (2014). Taurine and inflammatory diseases. Amino Acids, 46(1), 7–20.

McEwen, B. S. (2013). Erratum: Brain on stress: How the social environment gets under the skin (Proceedings of the National Academy of Sciences of the United States of America (2012) 109 (17180-17185) DOI: 10.1073/pnas.1121254109). Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1561.

Nelson, P. T., Alafuzoff, I., Bigio, E. H., Bouras, C., Braak, H., Cairns, N. J., Castellani, R. J., Crain, B. J., Davies, P., Tredici, K. Del, Duyckaerts, C., Frosch, M. P., Haroutunian, V., Hof, P. R., Hulette, C. M., Hyman, B. T., Iwatsubo, T., Jellinger, K. A., Jicha, G. A., … Beach, T. G. (2012). Correlation of alzheimer disease neuropathologic changes with cognitive status: A review of the literature. Journal of Neuropathology and Experimental Neurology, 71(5), 362–381.

Oliveira Fonseca, M., Da Silva, N. S., & Soares, C. P. (2019). Effect of cortisol on K562 leukemia cells. Mundo da Saude, 43(4), 854–869.

Panda, S., Mishra, S. R., & Mishra, V. V. V. (2018). A Review On " Taurine-a Magic Molecule ". European Journal of Pharmaceutical and Medical Research, 5(02), 534–536.

Reitz, C., & Mayeux, R. (2014). Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology, 88(4), 640–651.

Ripps, H., & Shen, W. (2012). Review: Taurine: A “very essential” amino acid. Molecular Vision, 18(November), 2673–2686.

Rossato, R. C. (2019). Hydrocortisone cytorestores oxidative stress‐induced neuroblastoma. Alzheimer’s & Dementia, 15, P642–P642.

Ruiz, H. H., Chi, T., Shin, A. C., Lindtner, C., Hsieh, W., Ehrlich, M., Gandy, S., & Buettner, C. (2016). Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer’s disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels. Alzheimer’s and Dementia, 12(8), 851–861.

Salameh, T. S., Bullock, K. M., Hujoel, I. A., Niehoff, M. L., Wolden-Hanson, T., Kim, J., Morley, J. E., Farr, S. A., & Banks, W. A. (2015). Central Nervous System Delivery of Intranasal Insulin: Mechanisms of Uptake and Effects on Cognition. Journal of Alzheimer’s Disease, 47(3), 715–728.

Salles, G. N., Calió, M. L., Afewerki, S., Pacheco-Soares, C., Porcionatto, M., Hölscher, C., & Lobo, A. O. (2018). Prolonged Drug-Releasing Fibers Attenuate Alzheimer’s Disease-like Pathogenesis. ACS Applied Materials and Interfaces, 10(43), 36693–36702.

Salles, G. N., Pereira, F. A. dos S., Pacheco-Soares, C., Marciano, F. R., Hölscher, C., Webster, T. J., & Lobo, A. O. (2017). A Novel Bioresorbable Device as a Controlled Release System for Protecting Cells from Oxidative Stress from Alzheimer’s Disease. Molecular Neurobiology, 54(9), 6827–6838.

Sartori, T. (2015). Sartori, T. Efeitos da glutamina e taurina sobre a via de sinalização do NF κ B em células Raw 264 . 7 estimuladas com LPS Talita Sartori. 2015.

Shimada, K., et al. (2015). Observation: Application and advantages of BMK in osteoporosis by monitoring the dose of antiresorptive drugs with CTx. Journal of the Medical Association of Thailand, 94(10 SUPPL.), 581–596.

Toledo, J. B., Toledo, E., Weiner, M. W., Jack, C. R., Jagust, W., Lee, V. M. Y., Shaw, L. M., & Trojanowski, J. Q. (2012). Cardiovascular risk factors, cortisol, and amyloid-β deposition in Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s and Dementia, 8(6), 483–489.

Tyagi, E., Zhuang, Y., Agrawal, R., Ying, Z., & Gomez-Pinilla, F. (2015). Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiology of Disease, 73, 307–318.

Vitaliano, P. P., Murphy, M., Young, H. M., Echeverria, D., & Borson, S. (2011). Does caring for a spouse with dementia promote cognitive decline? A hypothesis and proposed mechanisms. Journal of the American Geriatrics Society, 59(5), 900–908.

Wang, L. Y., Raskind, M. A., Wilkinson, C. W., Shofer, J. B., Sikkema, C., Szot, P., Quinn, J. F., Galasko, D. R., & Peskind, E. R. (2018). Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. International Journal of Geriatric Psychiatry, 33(5), 763–768.

Wei, W., & Ji, S. (2018). Cellular senescence: Molecular mechanisms and pathogenicity. Journal of Cellular Physiology, 233(12), 9121–9135.

Zhou, Y., Holmseth, S., Guo, C., Hassel, B., Höfner, G., Huitfeldt, H. S., Wanner, K. T., & Danbolt, N. C. (2012). Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents. Journal of Biological Chemistry, 287(42), 35733–35746.

Zvěřová, M., Fišar, Z., Jirák, R., Kitzlerová, E., Hroudová, J., & Raboch, J. (2013). Plasma cortisol in Alzheimer’s disease with or without depressive symptoms. Medical Science Monitor, 19(1), 681–689.




How to Cite

ROSSATO, R. C. .; GRANATO, A. E. C. .; MORAES, C. D. G. de O. .; SALLES, G. N. .; SOARES, C. P. . Neuroprotective effects of taurine on SH-SY5Y cells under hydrocortisone induced stress. Research, Society and Development, [S. l.], v. 10, n. 9, p. e55510918426, 2021. DOI: 10.33448/rsd-v10i9.18426. Disponível em: Acesso em: 21 sep. 2021.



Health Sciences