Spectral quality as an eliciting agent in the production of phenolic compounds in the callus of Hyptis marrubioides Epling





Abiotic elicitation; abiotic elicitation, callus culture, HPLC, light quality, UVC radiation.; Callus culture; HPLC; Light quality; UVC radiation.


Hyptis marrubioides Epling is a species of the Brazilian cerrado traditionally used to treat gastrointestinal and cutaneous infections, pain, and cramps. The use of visible and ultraviolet C (UVC) radiation is a promising strategy to optimize the production of the bioactive metabolites. Therefore, the effect of the spectral quality of light on the production of metabolites was evaluated in H. marrubioides callus. The callus was inoculated on MS medium with 50% of the salt concentration containing 2 mg L-1 naphthaleneacetic acid (NAA) and 1 mg L-1 benzylaminopurine (BAP). The callus cultures were exposed for 20 days to the spectral qualities of white light, blue, red, and blue + red as well as to darkness. In addition, the callus cultivated under white light were exposed to UVC on the 21st day for 0, 30, 60, 120, and 240 seconds. The exposure of H. marrubioides callus to blue light negatively affects the synthesis of phenolic compounds. Red light stimulates the synthesis of caffeic acid and luteolin. Darkness was the best condition among those studied because it was associated with the increased accumulation of caffeic acid, chlorogenic acid, rosmarinic acid, and luteolin. The exposure of H. marrubioides callus cultivated under white light to UVC radiation promoted an increase in the synthesis of chlorogenic acid, ferulic acid, rosmarinic acid, and luteolin.


Abbasi B.H., Tian C.L., Murch S.J., Saxena P.K., Liu C.Z. (2007). Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea, Plant. Cell. Rep. 26, 1367-1372, https://doi.org/10.1007/s00299-007-0344-5.

Abd El-Aal M.S., Rabie K.A.E., Manaf H.H. (2016). The effect of uv-c on secondary metabolites production of echinacea purpurea culture in vitro, J. Biol. Chem. Environ. Sci. 11, 465-483.

Ahmad N., Rab A., Ahmad N. (2016). Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert), J. Photochem. Photobiol. B 154, 51-56, https://doi.org/10.1016/j.jphotobiol.2015.11.015.

Almeida E.P., R.P. Oliveira, Dantas J.L.L. (2001). Indução e desenvolvimento de calos e embriões somáticos em mamoeiro, Sci. Agric. 58, 51-54, http://dx.doi.org/10.1590/S0103-90162001000100009.

Arias J.P., Zapata K., Rojano B., Arias M. (2016). Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana, J. Photochem. Photobiol. B 163, 87-91, http://dx.doi.org/10.1016/j.jphotobiol.2016.08.014.

Arrigoni-Blank M.F., Antoniolli A.R., Caetano L.C., Campos D.A., Blank A.F., Alves P.B. (2008). Antinociceptive activity of the volatile oils of Hyptis pectinata L. Poit. (Lamiaceae) genotypes, Phytomedicine 15, 334-339, https://doi.org/10.1016/j.phymed.2007.09.009.

Barbosa P.P.P., Ramos C.P. (1992). Studies on the antiulcerogenic activity of the essential oil of Hyptis mutabilis Briq. in Rats, Phytother. Res. 6, 114-115, https://doi.org/10.1002/ptr.2650060214.

Bourgaud F., Gravot A., Milesi S., Gontier E. (2001). Production of plant secondary metabolites: a historical perspective, Plant Sci. 2001, 839-851, https://doi.org/10.1016/S0168-9452(01)00490-3.

Bueno A.X., Moreira A.T.S., Silva F.T. (2006). Estevam C.S., Marchioro M., Effects of the aqueous extract from Hyptis pectinata leaves on rodent central nervous system, Rev. Brasil. Farmacogn. 16, 317-323, https://doi.org/10.1590/S0102-695X2006000300007.

Carvalho S.D., Folta K.M. (2014). Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content, Hortic. Res. 1, 1-13, http://dx.doi.org/10.1038/hortres.2014.8.

Cetin E.S. (2014). Induction of secondary metabolite production by UV-C radiation in Vitis vinifera L. Öküzgözü callus cultures, Biol. Res. 47, 37, https://doi.org/10.1186/0717-6287-47-37.

Coelho G.C., Rachwal M.F.G., Dedecek R.A., Curcio G.R., Nietsche K., Schenkel E.P. (2007). Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil, Biochem. Syst. Ecol. 35 75-80, https://doi.org/10.1016/j.bse.2006.09.001.

Costa J.G.M., Rodrigues F.F.G., Angélico E.C., Silva M.R., Mota M.L., Santos N.K.A., Cardoso A.L.H., Lemos T.L.G. (2005). Estudo químico-biológico dos óleos essenciais de Hyptis martiusii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegypti, Rev. Brasil. Farmacogn. 15, https://doi.org/10.1590/S0102-695X2005000400008.

Coutinho H.D.M., Costa J.G.M., Lima E.O., Falcão-Silva V.S.,. Siqueira-Júnior J.P. (2009). In vitro interference of Hyptis martiusii Benth. & chlorpromazine against an aminoglycoside - resistant Escherichia coli, Indian J. Med. Res. 129, 566-568.

Dias M.I., Sousa M.J., Alves R.C., Ferreira I.C.F.R. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: a review, Ind. Crop. Prod. 82, 9-22, https://doi.org/10.1016/j.indcrop.2015.12.016.

Fazal H., Abbasi B.H., Ahmad N., Ali S.S., Akbar F., Kanwal F. (2016). Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L, J. Photochem. Photobiol. B 159, 1-7, https://doi.org/10.1016/j.jphotobiol.2016.03.008.

Ferreira D.F., SISVAR: a computer statistical analysis system, Cien. Agrotec. 35 (2011) 1039-1042, http://dx.doi.org/10.1590/S1413-70542011000600001.

Gupta S.K., Sharma M., Deeba F., Pandey V. (2017). Plant Response: UV-B Avoidance Mechanisms, in: V.P. Singh, S. Singh, S.M. Prasad, P. Parihar (Eds.) UV-B radiation: from environmental stressor to regulator of plant growth, Wiley Blackwell, Chichester, pp. 227-258.

Hernandez-Aguilar, C., Dominguez-Pacheco, A., Tenango, M. P., Valderrama-Bravo, C., Hernández, M. S., Cruz-Orea, A., & Ordonez-Miranda, J. (2021). Characterization of bean seeds, germination, and phenolic compounds of seedlings by UV-C radiation. Journal of Plant Growth Regulation, 40(2), 642-655, https://doi.org/10.1007/s00344-020-10125-0.

Huché-Thélier L., Crespel L., Gourrierec J.L., Morel P., Sakr S., Leduc N. (2016). Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture, Environ. Exp. Bot 121, 22-38, https://doi.org/10.1016/j.envexpbot.2015.06.009.

Kokotkiewicz A., Bucinski A., Luczkiewicz M. (2014). Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush), Plant Cell Tissue Organ Cult. 118, 589-593, https://doi.org/10.1007/s11240-014-0502-8.

Kravets A.P., Sokolova D.A., Vengzhen G.S., Grodzinskiĭ D.M. (2013). [Fractionated UV-C irradiation effects on the changes of transcribed and satellite DNA methylation profile and unstable chromosomal aberration yield], Radiats. Biol. Radioecol. 53, 583-591.

Kuhnt M., Probstle A., Rimpler H., Bauer R., Heinrich M. (1995). Biological and pharmacological activities and further constituents of Hyptis verticillata, Planta Med. 61, 227-232, https://doi.org/10.1055/s-2006-958061.

Liu W., Liu C., Yang C., Wang L., Li S. (2010). Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation, Food Chem. 122, 475-481.

Liu Z., Zhang Y., Wang J., Li P., Zhao C., Chen Y., Bi Y. (2015). Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings, Plant. Sci. 238, 64-72, https://doi.org/10.1016/j.plantsci.2015.06.001.

Luis J.C., Pérez R.M., González F.V. (2007). UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants, Food Chem. 101, 1211-1215, https://doi.org/10.1016/j.foodchem.2006.03.023.

Marti G., Schnee S., Andrey Y., Simoes-Pires C., Carrupt P.A., Wolfender J.L., Gindro K. (2014). Study of leaf metabolome modifications induced by UV-C radiations in representative Vitis, Cissus and Cannabis species by LC-MS based metabolomics and antioxidant assays, Molecules 19, 14004-14021, https://doi.org/10.3390/molecules190914004.

Moon S.H., Mistry B., Kim D.H., Pandurangan M. (2017). Antioxidant and anticancer potential of bioactive compounds following UV-C light-induced plant cambium meristematic cell cultures, Ind. Crop. Prod. 109, 762-772, https://doi.org/10.1016/j.indcrop.2017.09.024.

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant. 15, 473-497, https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Murthy H.N., Lee E.J., Paek K.Y. (2014). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation, Plant Cell Tissue Organ Cult. 118, 1-16, https://doi.org/10.1007/s11240-014-0467-7.

Ramakrishna A., Ravishankar G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants, Plant. Signal. Behav. 6, 1720-1731, https://doi.org/10.4161/psb.6.11.17613.

Rodrigues V.E.G., Carvalho D.A.D. (2001). Levantamento etnobotânico de plantas medicinais no domíniodo cerrado na região do alto rio Grande – Minas Gerais, Cien. Agrotec. 25, 102-123.

Tariq U., Ali M., Abbasi B.H. (2014). Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L, J. Photochem. Photobiol. B 130, 264-271, http://dx.doi.org/10.1016/j.jphotobiol.2013.11.026.

Tiecher A., de Paula L.A., Chaves F.C., Rombaldi C.V. (2013). UV-C effect on ethylene, polyamines and the regulation of tomato fruit ripening, Postharvest Biol. Technol. 86, 230-239, https://doi.org/10.1016/j.postharvbio.2013.07.016

Urban L., Charles F., de Miranda M.R.A., Aarrouf J. (2016). Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest, Plant Physiol. Biochem. 105, 1-11, https://doi.org/10.1016/j.plaphy.2016.04.004.

Villacís‐Chiriboga, J., Elst, K., Van Camp, J., Vera, E., & Ruales, J. (2020). Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Comprehensive Reviews in Food Science and Food Safety, 19(2), 405-447, https://doi.org/10.1111/1541-4337.12542.

Wang H., Ma L.G., Li J.M., Zhao H.Y., Deng X.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development, Science 294, 154-158, https://doi.org/10.1126/science.1063630.

Wargent J.J., Jordan B.R. (2013). From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production, New Phytol. 197, 1058-107, https://doi.org/10.1111/nph.12132.

Yousefzadi M., Sharifi M., Behmanesh M., Ghasempour A., Moyano E., Palazon J. (2012). The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture, Plant Physiol. Biochem. 56, 41-46, https://doi.org/10.1016/j.plaphy.2012.04.010.

Zagoskina N.V., Alyavina A.K., Gladyshko T.O., Lapshin P.V., Egorova E.A., Bukhov N.G. (2005). Ultraviolet rays promote development of photosystem II photochemical activity and accumulation of phenolic compounds in the tea callus culture (Camellia sinensis), Russ. J. Plant Physiol. 52, 731-739, https://doi.org/10.1007/s11183-005-0109-3.

Zagoskina N.V., Dubravina G.A., Alyavina A.K., Goncharuk E.A. (2003). Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures, Russ. J. Plant Physiol. 50, 270-275, https://doi.org/10.1023/A:1022945819389.




How to Cite

DANTAS, L. A. .; FARIA , P. S. A. .; MELO, A. M. de; ROSA, M.; RESENDE, E. C. .; PEREIRA, P. S. .; SILVA, F. G. .; RUBIO NETO, A. Spectral quality as an eliciting agent in the production of phenolic compounds in the callus of Hyptis marrubioides Epling. Research, Society and Development, [S. l.], v. 10, n. 9, p. e59210918472, 2021. DOI: 10.33448/rsd-v10i9.18472. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18472. Acesso em: 20 sep. 2021.



Agrarian and Biological Sciences